66 research outputs found
The ASTRO-H X-ray Observatory
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly
successful X-ray missions initiated by the Institute of Space and Astronautical
Science (ISAS). ASTRO-H will investigate the physics of the high-energy
universe via a suite of four instruments, covering a very wide energy range,
from 0.3 keV to 600 keV. These instruments include a high-resolution,
high-throughput spectrometer sensitive over 0.3-2 keV with high spectral
resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in
the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers
covering 5-80 keV, located in the focal plane of multilayer-coated, focusing
hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12
keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and
a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the
40-600 keV band. The simultaneous broad bandpass, coupled with high spectral
resolution, will enable the pursuit of a wide variety of important science
themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical
Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to
Gamma Ray
The Quiescent Intracluster Medium in the Core of the Perseus Cluster
Clusters of galaxies are the most massive gravitationally-bound objects in
the Universe and are still forming. They are thus important probes of
cosmological parameters and a host of astrophysical processes. Knowledge of the
dynamics of the pervasive hot gas, which dominates in mass over stars in a
cluster, is a crucial missing ingredient. It can enable new insights into
mechanical energy injection by the central supermassive black hole and the use
of hydrostatic equilibrium for the determination of cluster masses. X-rays from
the core of the Perseus cluster are emitted by the 50 million K diffuse hot
plasma filling its gravitational potential well. The Active Galactic Nucleus of
the central galaxy NGC1275 is pumping jetted energy into the surrounding
intracluster medium, creating buoyant bubbles filled with relativistic plasma.
These likely induce motions in the intracluster medium and heat the inner gas
preventing runaway radiative cooling; a process known as Active Galactic
Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus
cluster core, which reveal a remarkably quiescent atmosphere where the gas has
a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from
the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s
is found across the 60 kpc image of the cluster core. Turbulent pressure
support in the gas is 4% or less of the thermodynamic pressure, with large
scale shear at most doubling that estimate. We infer that total cluster masses
determined from hydrostatic equilibrium in the central regions need little
correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July
Discovery of X-ray polarization angle rotation in active galaxy Mrk 421
The magnetic field conditions in astrophysical relativistic jets can be
probed by multiwavelength polarimetry, which has been recently extended to
X-rays. For example, one can track how the magnetic field changes in the flow
of the radiating particles by observing rotations of the electric vector
position angle . Here we report the discovery of a
rotation in the X-ray band in the blazar Mrk 421 at an average flux state.
Across the 5 days of Imaging X-ray Polarimetry Explorer (IXPE) observations of
4-6 and 7-9 June 2022, rotated in total by .
Over the two respective date ranges, we find constant, within uncertainties,
rotation rates ( and ) and polarization
degrees (). Simulations of a random walk of the
polarization vector indicate that it is unlikely that such rotation(s) are
produced by a stochastic process. The X-ray emitting site does not completely
overlap the radio/infrared/optical emission sites, as no similar rotation of
was observed in quasi-simultaneous data at longer wavelengths. We
propose that the observed rotation was caused by a helical magnetic structure
in the jet, illuminated in the X-rays by a localized shock propagating along
this helix. The optically emitting region likely lies in a sheath surrounding
an inner spine where the X-ray radiation is released
Magnetic Field Properties inside the Jet of Mrk 421: Multiwavelength Polarimetry Including the Imaging X-ray Polarimetry Explorer
We conducted a polarimetry campaign from radio to X-ray wavelengths of the
high-synchrotron-peak (HSP) blazar Mrk 421, including Imaging X-ray Polarimetry
Explorer (IXPE) measurements on 2022 December 6-8. We detected X-ray
polarization of Mrk 421 with a degree of =141 and an
electric-vector position angle =1073 in the 2-8
keV band. From the time variability analysis, we find a significant episodic
variation in . During 7 months from the first IXPE pointing of
Mrk 421 in 2022 May, varied across the range of 0 to
180, while maintained similar values within
10-15. Furthermore, a swing in in 2022 June was
accompanied by simultaneous spectral variations. The results of the
multiwavelength polarimetry show that the X-ray polarization degree was
generally 2-3 times greater than that at longer wavelengths, while the
polarization angle fluctuated. Additionally, based on radio, infrared, and
optical polarimetry, we find that rotation of occurred in the opposite
direction with respect to the rotation of over longer timescales
at similar epochs. The polarization behavior observed across multiple
wavelengths is consistent with previous IXPE findings for HSP blazars. This
result favors the energy-stratified shock model developed to explain variable
emission in relativistic jets. The accompanying spectral variation during the
rotation can be explained by a fluctuation in the physical
conditions, e.g., in the energy distribution of relativistic electrons. The
opposite rotation direction of between the X-ray and longer-wavelength
polarization accentuates the conclusion that the X-ray emitting region is
spatially separated from that at longer wavelengths.Comment: 17 pages, 13 figures, 4 tables; Accepted for publication in A&
X-ray Polarization Observations of BL Lacertae
Blazars are a class of jet-dominated active galactic nuclei with a typical
double-humped spectral energy distribution. It is of common consensus the
Synchrotron emission to be responsible for the low frequency peak, while the
origin of the high frequency hump is still debated. The analysis of X-rays and
their polarization can provide a valuable tool to understand the physical
mechanisms responsible for the origin of high-energy emission of blazars. We
report the first observations of BL Lacertae performed with the Imaging X-ray
Polarimetry Explorer ({IXPE}), from which an upper limit to the polarization
degree 12.6\% was found in the 2-8 keV band. We contemporaneously
measured the polarization in radio, infrared, and optical wavelengths. Our
multiwavelength polarization analysis disfavors a significant contribution of
proton synchrotron radiation to the X-ray emission at these epochs. Instead, it
supports a leptonic origin for the X-ray emission in BL Lac.Comment: 17 pages, 5 figures, accepted for publication in ApJ
Hitomi (ASTRO-H) X-ray Astronomy Satellite
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month
主要果菜類細胞壁から分離したキシログルカンのオリゴ糖単位の組成分析
The oligosaccharide units of xyloglucans from some fruit vegetables were comparatively
analyzed by enzymatic digestion followed by anion-exchange chromatography with
pulsed amperometric detection. The enzymes used were a xyloglucan-specific endo-1, 4P-
D- glucanase (xyloglucanase) from Penicillium sp. M 451 and an isoprimeveroseproducing
oligoxyloglucan hydrolase from Eupenicillium sp. M9. The oligosaccharide units
of the polysaccharides were XXXG, XXLG, XLXG, XXFG, XLLG, and XLFG [where
each (1-4)-p-linked D-glucosyl residue in the backbone is given a one-letter code according
to its substituents: G, p-D-G1c; X, a-D-Xyl-(l-6)-P-D-G1c; L, p-D-Gal-(l-2)-a-DXyl-(
l-6)-P-D-G1c; F, a-L -Fuc-(l-2)-p-D-Gal-(l-2)-a-D-Xyl-(l-6)-P-D-G1c] in an
approximate molar ratio of 36 : 4 : 6 : 31 : 1 : 22 for cucumber, of 37 : 8 : 5 : 30 : 1 : 19 for
mung bean sprouts, and of 35 : 4 : 7 : 25 : 4 : 25 for pumpkin
- …