53 research outputs found

    Liver autophagy-induced valine and leucine in plasma reflect the metabolic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin

    Get PDF
    BACKGROUND: Sodium glucose co-transporter 2 (SGLT2) inhibitors are anti-diabetic drugs for type 2 diabetes that lower blood glucose levels and body weight. It is of special interest that SGLT2 inhibitors also improve liver metabolism and fatty liver. Liver is an important organ in regulation of energy metabolism, but the metabolic action of SGLT inhibitors in liver remains unclear. METHODS: We investigated the factors associated with the beneficial effects of dapagliflozin, a SGLT2 inhibitor, in the liver after confirming its glucose-lowering and weight loss effects using an obesity and diabetes mouse model. We also performed clinical study of patients with type 2 diabetes to explore candidate biomarkers that reflect the beneficial action of dapagliflozin in the liver. FINDINGS: In animal study, dapagliflozin induced autophagy in the liver (LC3-II to LC3-I expression ratio: P < 0·05 vs. control), and valine and leucine levels were increased in plasma (P < 0·01 vs. control) as well as in liver (P < 0·05 vs. control). Thus, increased plasma valine and leucine levels are potential biomarkers for improved liver metabolism. Clinical study found that valine and leucine levels were markedly higher in patients treated with dapagliflozin (valine: P < 0·05 vs. control, leucine: P < 0·01 vs. control) than those not treated after one week intervention. INTERPRETATION: Dapagliflozin improves liver metabolism via hepatic autophagy, and plasma valine and leucine levels may reflect its metabolic effect. FUNDING: AstraZeneca K.K., Ono Pharmaceutical Co., Ltd., Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan Society for the Promotion of Science (JSPS), Japan Agency for Medical Research and Development (AMED), Novo Nordisk Pharma Ltd., and Japan Foundation for Applied Enzymology, and MSD Life Science Foundation International

    Urinary sodium-to-potassium ratio associates with hypertension and current disease activity in patients with rheumatoid arthritis: a cross-sectional study

    Get PDF
    BACKGROUND: Excessive salt intake is thought to exacerbate both development of hypertension and autoimmune diseases in animal models, but the clinical impact of excessive salt in rheumatoid arthritis (RA) patients is still unknown. We performed a cross-sectional study to clarify the associations between salt load index (urinary sodium-to-potassium ratio (Na/K ratio)), current disease activity, and hypertension in an RA population. METHODS: Three hundred thirty-six participants from our cohort database (KURAMA) were enrolled. We used the spot urine Na/K ratio as a simplified index of salt loading and used the 28-Joint RA Disease Activity Score (DAS28-ESR) as an indicator of current RA disease activity. Using these indicators, we evaluated statistical associations between urinary Na/K ratio, DAS28-ESR, and prevalence of hypertension. RESULTS: Urinary Na/K ratio was positively associated with measured systolic and diastolic blood pressure and also with prevalence of hypertension even after covariate adjustment (OR 1.34, p <  0.001). In addition, increased urinary Na/K ratio was significantly and positively correlated with DAS28-ESR in multiple regression analysis (estimate 0.12, p <  0.001), as was also the case in gender-separated and prednisolone-separated sub-analyses. CONCLUSION: Urinary Na/K ratio was independently associated with current disease activity as well as with prevalence of hypertension in RA patients. Thus, dietary modifications such as salt restriction and potassium supplementation should be investigated as a potential candidate for attenuating both disease activity and hypertension in RA patients

    BCAA catabolism in brown fat controls energy homeostasis through SLC25A44.

    Get PDF
    Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating&nbsp;levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health

    Nationwide surveillance of bacterial respiratory pathogens conducted by the surveillance committee of Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, and the Japanese Society for Clinical Microbiology in 2010: General view of the pathogens\u27 antibacterial susceptibility

    Get PDF
    The nationwide surveillance on antimicrobial susceptibility of bacterial respiratory pathogens from patients in Japan, was conducted by Japanese Society of Chemotherapy, Japanese Association for Infectious Diseases and Japanese Society for Clinical Microbiology in 2010.The isolates were collected from clinical specimens obtained from well-diagnosed adult patients with respiratory tract infections during the period from January and April 2010 by three societies. Antimicrobial susceptibility testing was conducted at the central reference laboratory according to the method recommended by Clinical and Laboratory Standard Institutes using maximum 45 antibacterial agents.Susceptibility testing was evaluable with 954 strains (206 Staphylococcus aureus, 189 Streptococcus pneumoniae, 4 Streptococcus pyogenes, 182 Haemophilus influenzae, 74 Moraxella catarrhalis, 139 Klebsiella pneumoniae and 160 Pseudomonas aeruginosa). Ratio of methicillin-resistant S.aureus was as high as 50.5%, and those of penicillin-intermediate and -resistant S.pneumoniae were 1.1% and 0.0%, respectively. Among H.influenzae, 17.6% of them were found to be β-lactamase-non-producing ampicillin (ABPC)-intermediately resistant, 33.5% to be β-lactamase-non-producing ABPC-resistant and 11.0% to be β-lactamase-producing ABPC-resistant strains. Extended spectrum β-lactamase-producing K.pneumoniae and multi-drug resistant P.aeruginosa with metallo β-lactamase were 2.9% and 0.6%, respectively.Continuous national surveillance of antimicrobial susceptibility of respiratory pathogens is crucial in order to monitor changing patterns of susceptibility and to be able to update treatment recommendations on a regular basis

    テトラヒドロビオプテリンは褐色脂肪組織を活性化し全身のエネルギー代謝を制御する

    Get PDF
    京都大学0048新制・課程博士博士(医学)甲第20968号医博第4314号新制||医||1026(附属図書館)京都大学大学院医学研究科医学専攻(主査)教授 長船 健二, 教授 上杉 志成, 教授 岩田 想学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    Primary Role of Interleukin-1α and Interleukin-1β in Lipopolysaccharide-Induced Hypoglycemia in Mice

    No full text
    Within a few hours of its injection into mice, lipopolysaccharide (LPS) induces hypoglycemia and the production of various cytokines. We previously found that interleukin-1α (IL-1α), IL-1β, and tumor necrosis factor alpha (TNF-α) induce hypoglycemia and that the minimum effective dose of IL-1α or IL-1β is about 1/1,000 that of TNF-α. In the present study, we examined the contribution made by IL-1 to the hypoglycemic action of LPS. Nine other cytokines tested were all inactive at inducing hypoglycemia. LPS produced hypoglycemia in mice deficient in either IL-1α or IL-1β but not in mice deficient in both cytokines (IL-1α and -1β knockout [IL-1α/β KO] mice). IL-1α, IL-1β, and TNF-α induced hypoglycemia in IL-1α/β KO mice, as they did in normal control mice. The LPS-induced elevation of serum cortisol was weaker in IL-1α/β KO mice than in control mice, and, in the latter, serum cortisol was markedly raised while blood glucose was declining. IL-1α decreased blood glucose both in NOD mice (which have impaired insulin production) and in KK-Ay mice (insulin resistant). These results suggest that (i) cortisol may not be involved in mediating the resistance of IL-1α/β KO mice to the hypoglycemic action of LPS, (ii) as a mediator, IL-1 is a prerequisite for the hypoglycemic action of LPS, (iii) IL-1α and IL-1β perform mutual compensation, and (iv) IL-1 plays a role as the primary stimulator of the many anabolic reactions required for the elaboration of immune responses against infection
    corecore