31 research outputs found

    Radiosynthesis of 11C-phenytoin Using a DEGDEE Solvent for Clinical PET Studies

    No full text
    Objective(s): Phenytoin is an antiepileptic drug that is used worldwide.The whole-body pharmacokinetics of this drug have been extensivelystudied using 11C-phenytoin in small animals. However, because ofthe limited production amounts that are presently available, clinical11C-phenytoin PET studies to examine the pharmacokinetics of phenytoinin humans have not yet been performed. We aimed to establish a newsynthesis method to produce large amounts of 11C-phenytoin to conducthuman studies.Methods: 11C-methane was produced using an in-house cyclotron by the14N (p, α) 11C nuclear reaction of 5 % of hydrogen containing 95 % ofnitrogen gas. About 30 GBq of 11C-methane was then transferred to ahomogenization cell containing Fe2O3 powder mixed with Fe granulesheated at 320 0C to yield 11C-phosgene. Xylene, 1,4-dioxane, and diethyleneglycol diethyl ether (DEGDEE) were investigated as possible reactionsolvents.Results: The ratio of 11C-phenytoin radioactivity to the total 11C radioactivityin the reaction vessel (reaction efficiency) was 7.5% for xylene, 11% for1,4-dioxane, and 37% for DEGDEE. The synthesis time was within 45 minfrom the end of bombardment until obtaining the final product. Theradioactivity produced was more than 4.1 GBq in 10 mL of saline at the endof synthesis. The specific activity of the product ranged from 1.7 to 2.2GBq/μmol. The quality of the 11C-phenytoin injection passed all criteriarequired for clinical use.Conclusion: The use of DEGDEE as a solvent enabled the production of alarge amount of 11C-phenytoin sufficient to enable PET studies examiningthe human pharmacokinetics of phenytoin

    Preserved Cerebral Oxygen Metabolism in Astrocytic Dysfunction: A Combination Study of <sup>15</sup>O-Gas PET with <sup>14</sup>C-Acetate Autoradiography

    No full text
    Fluorocitrate (FC) is a specific metabolic inhibitor of the tricarboxylic acid (TCA) cycle in astrocytes. The purpose of this study was to evaluate whether inhibition of the astrocyte TCA cycle by FC would affect the oxygen metabolism in the rat brain. At 4 h after the intracranial FC injection, the rats (n = 9) were investigated by 15O-labeled gas PET to measure the cerebral blood flow (CBF), the cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction (OEF), and cerebral blood volume (CBV). After the 15O-gas PET, the rats were given an intravenous injection of 14C-acetate for autoradiography. 15O-gas PET showed no significant differences in any of the measured parameters between the ipsilateral and contralateral striatum (high dose group: CBF (54.4 &#177; 8.8 and 55.3 &#177; 11.6 mL/100 mL/min), CMRO2 (7.0 &#177; 0.9 and 7.1 &#177; 1.2 mL/100 mL/min), OEF (72.0 &#177; 8.9 and 70.8 &#177; 8.2%), and CBV (4.1 &#177; 0.8 and 4.2 &#177; 0.9 mL/100 mL), respectively). In contrast, the 14C-acetate autoradiography revealed a significant inhibition of the astrocyte metabolism in the ipsilateral striatum. The regional cerebral oxygen consumption as well as the hemodynamic parameters were maintained even in the face of inhibition of the astrocyte TCA cycle metabolism in the rat brain

    Whole-Body Distribution of Donepezil as an Acetylcholinesterase Inhibitor after Oral Administration in Normal Human Subjects: A 11C-donepezil PET Study

    No full text
    Objective(s): It is difficult to investigate the whole-body distribution of an orally administered drug by means of positron emission tomography (PET), owing to the short physical half-life of radionuclides, especially when 11C-labeled compounds are tested. Therefore, we aimed to examine the whole-body distribution of donepezil (DNP) as an acetylcholinesterase inhibitor by means of 11C-DNP PET imaging, combined with the oral administration of pharmacological doses of DNP.Methods: We studied 14 healthy volunteers, divided into group A (n=4) and group B (n=10). At first, we studied four females (mean age: 57.3±4.5 y), three of whom underwent 11C-DNP PET scan at 2.5 h after the oral administration of 1 mg and 30 μg of DNP, respectively, while one patient was scanned following the oral administration of 30 μg of DNP (group A). Then, we studied five females and five males (48.3±6.1 y), who underwent 11C-DNP PET scan, without the oral administration of DNP (group B). Plasma DNP concentration upon scanning was measured by tandem mass spectrometry. Arterialized venous blood samples were collected periodically to measure plasma radioactivity and metabolites. In group A, 11C-DNP PET scan of the brain and whole body continued for 60 and 20 min, respectively. Subjects in group B underwent sequential whole-body scan for 60 min. The regional uptake of 11C-DNP was analyzed by measuring the standard uptake value (SUV) through setting regions of interest on major organs with reference CT.Results: In group A, plasma DNP concentration was significantly correlated with the orally administered dose of DNP. The mean plasma concentration was 2.00 nM (n=3) after 1 mg oral administration and 0.06 nM (n=4) after 30 μg oral administration. No significant difference in plasma radioactivity or fraction of metabolites was found between groups A and B. High 11C-DNP accumulation was found in the liver, stomach, pancreas, brain, salivary glands, bone marrow, and myocardium in groups A and B, in this order. No significant difference in SUV value was found among 11C-DNP PET studies after the oral administration of 1 mg of DNP, 30 μg of DNP, or no DNP.Conclusion: The present study demonstrated that the whole-body distribution of DNP after the oral administration of pharmacological doses could be evaluated by 11C-DNP PET studies, combined with the oral administration of DNP

    Oxygen-15 labeled CO2, O2, and CO PET in small animals: evaluation using a 3D-mode microPET scanner and impact of reconstruction algorithms

    No full text
    Abstract Background Positron emission tomography (PET) studies using 15O-labeled CO2, O2, and CO have been used in humans to evaluate cerebral blood flow (CBF), the cerebral oxygen extraction fraction (OEF), and the cerebral metabolic rate of oxygen (CMRO2) and cerebral blood volume (CBV), respectively. In preclinical studies, however, PET studies using 15O-labeled gases are not widely performed because of the technical difficulties associated with handling labeled gases with a short half-life. The aims of the present study were to evaluate the scatter fraction using 3D-mode micro-PET for 15O-labeled gas studies and the influence of reconstruction algorithms on quantitative values. Nine male SD rats were studied using the steady state inhalation method for 15O-labeled gases with arterial blood sampling. The resulting PET images were reconstructed using filtered back projection (FBP), ordered-subset expectation maximization (OSEM) 2D, or OSEM 3D followed by maximum a posteriori (OSEM3D-MAP). The quantitative values for each brain region and each reconstruction method were calculated by applying different reconstruction methods. Results The quantitative values for the whole brain as calculated using FBP were 46.6 ± 12.5 mL/100 mL/min (CBF), 63.7 ± 7.2% (OEF), 5.72 ± 0.34 mL/100 mL/min (CMRO2), and 5.66 ± 0.34 mL/100 mL (CBV), respectively. The CBF and CMRO2 values were significantly higher when the OSEM2D and OSEM3D-MAP reconstruction methods were used, compared with FBP, whereas the OEF values were significantly lower when reconstructed using OSEM3D-MAP. Conclusions We evaluated the difference in quantitative values among the reconstruction algorithms using 3D-mode micro-PET. The iterative reconstruction method resulted in significantly higher quantitative values for CBF and CMRO2, compared with the values calculated using the FBP reconstruction method

    In vivo evaluation of percutaneous carbon dioxide treatment for improving intratumoral hypoxia using 18F-fluoromisonidazole PET-CT

    Get PDF
    Carbon dioxide (CO2) treatment is reported to have an antitumor effect owing to the improvement in intratumoral hypoxia. Previous studies were based on histological analysis alone. In the present study, the improvement in intratumoral hypoxia by percutaneous CO2 treatment in vivo was determined using 18F-fluoromisonidazole positron emission tomography-computed tomography (18F-FMISO PET-CT) images. Twelve Japanese nude mice underwent implantation of LM8 tumor cells in the dorsal subcutaneous area 2 weeks before percutaneous CO2 treatment and 18F-FMISO PET-CT scans. Immediately after intravenous injection of 18F-FMISO, CO2 and room air were administered transcutaneously in the CO2-treated group (n=6) and a control group (n=6), respectively; each treatment was performed for 10 minutes. PET-CT was performed 2 h after administration of 18F-FMISO. 18F-FMISO tumor uptake was quantitatively evaluated using the maximum standardized uptake value (SUVmax), tumor-to-liver ratio (TLR), tumor-to-muscle ratio (TMR), metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Mean ± standard error of the mean (SEM) of the tumor volume was not significantly different between the two groups (CO2-treated group, 1.178±0.450 cm3; control group, 1.368±0.295 cm3; P=0.485). Mean ± SEM of SUVmax, TLR, MTV (cm3) and TLG were significantly lower in the CO2-treated group compared with the control group (0.880±0.095 vs. 1.253±0.071, P=0.015; 1.063±0.147361 vs. 1.455±0.078, P=0.041; 0.353±0.139 vs. 1.569±0.438, P=0.015; 0.182±0.070 vs. 1.028±0.338, P=0.015), respectively. TMR was not significantly different between the two groups (4.520±0.503 vs. 5.504±0.310; P=0.240). In conclusion, 18F-FMISO PET revealed that percutaneous CO2 treatment improved intratumoral hypoxia in vivo. This technique enables assessment of the therapeutic effect in CO2 treatment by imaging, and may contribute to its clinical application

    Additional file 1: Figure S1. of Quantitative evaluation of oxygen metabolism in the intratumoral hypoxia: 18F-fluoromisonidazole and 15O-labelled gases inhalation PET

    No full text
    Multiple VOI settings on coronal fusion image of 18F-FMISO PET (window level 0–3 in SUV) and TBF PET (window level 0–80 ml/100 mL/min). VOIs (1-mm sphere) were manually placed over the entire tumor where there is an uptake of 18F-FMISO or TBF on the fusion PET images. Figure S2. Relationships between the 18F-FMISO SUV and quantitative values of TBF, TMRO2, OEF, and TBV of each tumor. Decreased trend of TBF and TBV, increased trend of OEF, and stable TMRO2 against the increase of 18F-FMISO SUV were observed. (DOC 673 kb

    Development of PET Imaging to Visualize Activated Macrophages Accumulated in the Transplanted iPSc-Derived Cardiac Myocytes of Allogeneic Origin for Detecting the Immune Rejection of Allogeneic Cell Transplants in Mice

    No full text
    <div><p>Allogeneic transplantation (Tx) of induced pluripotent stem cells (iPSCs) is a promising tissue regeneration therapy. However, this inevitably induces macrophage-mediated immune response against the graft, limiting its therapeutic efficacy. Monitoring the magnitude of the immune response using imaging tools would be useful for prolonging graft survival and increasing the therapy longevity. Minimally invasive quantitative detection of activated macrophages by medical imaging technologies such as positron emission tomography (PET) imaging targets translocator protein (TSPO), which is highly expressed on mitochondrial membrane, especially in activated macrophage. <i>N</i>,<i>N</i>-diethyl-2-[4-(2-fluoroethoxy) phenyl]-5,7-dimethylpyrazolo[1,5-<i>a</i>]pyrimidine-3-acetamide (DPA-714) is known as a TSPO ligand used in clinical settings. We herein hypothesized that immune rejection of the transplanted iPSC-derived cardiomyocytes (iPSC-CMs) of allogeneic origin may be quantitated using <sup>18</sup>F-DPA-714-PET imaging study. iPSC-CM cell-sheets of C57BL/6 mice origin were transplanted on the surface of the left ventricle (LV) of C57BL/6 mice as a syngeneic cell-transplant model (syngeneic Tx group), or Balb/c mice as an allogeneic model (allogeneic Tx group). <sup>18</sup>F-DPA-714-PET was used to determine the uptake ratio, calculated as the maximum standardized uptake value in the anterior and septal wall of the LV. The uptake ratio was significantly higher in the allogeneic Tx group than in the syngeneic group or the sham group at days 7 and day 10 after the cell transplantation. In addition, the immunochemistry showed significant presence of CD68 and CD3-positive cells at day 7 and 10 in the transplanted graft of the allogeneic Tx group. The expression of TSPO, <i>CD68</i>, <i>IL-1</i> beta, and <i>MCP-1</i> was significantly higher in the allogeneic Tx group than in the syngeneic Tx and the sham groups at day 7. The <sup>18</sup>F-DPA-714-PET imaging study enabled quantitative visualization of the macrophages-mediated immune rejection of the allogeneic iPSC-cardiac. This imaging tool may enable the understanding and monitoring host-immune response of the host, allogeneic cell transplantation therapy.</p></div
    corecore