63 research outputs found

    Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species

    Get PDF
    Background Recent studies in budding yeast have shown that antisense transcription occurs at many loci. However, the functional role of antisense transcripts has been demonstrated only in a few cases and it has been suggested that most antisense transcripts may result from promiscuous bi-directional transcription in a dense genome. Results Here, we use strand-specific RNA sequencing to study anti-sense transcription in Saccharomyces cerevisiae. We detect 1,103 putative antisense transcripts expressed in mid-log phase growth, ranging from 39 short transcripts covering only the 3' UTR of sense genes to 145 long transcripts covering the entire sense open reading frame. Many of these antisense transcripts overlap sense genes that are repressed in mid-log phase and are important in stationary phase, stress response, or meiosis. We validate the differential regulation of 67 antisense transcripts and their sense targets in relevant conditions, including nutrient limitation and environmental stresses. Moreover, we show that several antisense transcripts and, in some cases, their differential expression have been conserved across five species of yeast spanning 150 million years of evolution. Divergence in the regulation of antisense transcripts to two respiratory genes coincides with the evolution of respiro-fermentation. Conclusions Our work provides support for a global and conserved role for antisense transcription in yeast gene regulation.Canadian Friends of the Hebrew UniversityHoward Hughes Medical InstituteHuman Frontier Science Program (Strasbourg, France)Burroughs Wellcome Fund (Career Award at the Scientific Interface)National Institutes of Health (U.S.). Pioneer AwardBroad Institute of MIT and HarvardU.S.-Israel Binational Science Foundation (BSF)National Human Genome Research Institute (U.S.)Alfred P. Sloan Foundatio

    RNA polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast

    Get PDF
    BACKGROUND: The use of genome-wide RNA abundance profiling by microarrays and deep sequencing has spurred a revolution in our understanding of transcriptional control. However, changes in mRNA abundance reflect the combined effect of changes in RNA production, processing, and degradation, and thus, mRNA levels provide an occluded view of transcriptional regulation. RESULTS: To partially disentangle these issues, we carry out genome-wide RNA polymerase II (PolII) localization profiling in budding yeast in two different stress response time courses. While mRNA changes largely reflect changes in transcription, there remains a great deal of variation in mRNA levels that is not accounted for by changes in PolII abundance. We find that genes exhibiting \u27excess\u27 mRNA produced per PolII are enriched for those with overlapping cryptic transcripts, indicating a pervasive role for nonproductive or regulatory transcription in control of gene expression. Finally, we characterize changes in PolII localization when PolII is genetically inactivated using the rpb1-1 temperature-sensitive mutation. We find that PolII is lost from chromatin after roughly an hour at the restrictive temperature, and that there is a great deal of variability in the rate of PolII loss at different loci. CONCLUSIONS: Together, these results provide a global perspective on the relationship between PolII and mRNA production in budding yeast

    Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes

    Get PDF
    Background: Obesity and type 2 diabetes (T2D) are linked both with host genetics and with environmental factors, including dysbioses of the gut microbiota. However, it is unclear whether these microbial changes precede disease onset. Twin cohorts present a unique genetically-controlled opportunity to study the relationships between lifestyle factors and the microbiome. In particular, we hypothesized that family-independent changes in microbial composition and metabolic function during the sub-clinical state of T2D could be either causal or early biomarkers of progression. Methods: We collected fecal samples and clinical metadata from 20 monozygotic Korean twins at up to two time points, resulting in 36 stool shotgun metagenomes. While the participants were neither obese nor diabetic, they spanned the entire range of healthy to near-clinical values and thus enabled the study of microbial associations during sub-clinical disease while accounting for genetic background. Results: We found changes both in composition and in function of the sub-clinical gut microbiome, including a decrease in Akkermansia muciniphila suggesting a role prior to the onset of disease, and functional changes reflecting a response to oxidative stress comparable to that previously observed in chronic T2D and inflammatory bowel diseases. Finally, our unique study design allowed us to examine the strain similarity between twins, and we found that twins demonstrate strain-level differences in composition despite species-level similarities. Conclusions: These changes in the microbiome might be used for the early diagnosis of an inflamed gut and T2D prior to clinical onset of the disease and will help to advance toward microbial interventions. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0271-6) contains supplementary material, which is available to authorized users

    Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes

    Get PDF
    Background: Obesity and type 2 diabetes (T2D) are linked both with host genetics and with environmental factors, including dysbioses of the gut microbiota. However, it is unclear whether these microbial changes precede disease onset. Twin cohorts present a unique genetically-controlled opportunity to study the relationships between lifestyle factors and the microbiome. In particular, we hypothesized that family-independent changes in microbial composition and metabolic function during the sub-clinical state of T2D could be either causal or early biomarkers of progression. Methods: We collected fecal samples and clinical metadata from 20 monozygotic Korean twins at up to two time points, resulting in 36 stool shotgun metagenomes. While the participants were neither obese nor diabetic, they spanned the entire range of healthy to near-clinical values and thus enabled the study of microbial associations during sub-clinical disease while accounting for genetic background. Results: We found changes both in composition and in function of the sub-clinical gut microbiome, including a decrease in Akkermansia muciniphila suggesting a role prior to the onset of disease, and functional changes reflecting a response to oxidative stress comparable to that previously observed in chronic T2D and inflammatory bowel diseases. Finally, our unique study design allowed us to examine the strain similarity between twins, and we found that twins demonstrate strain-level differences in composition despite species-level similarities. Conclusions: These changes in the microbiome might be used for the early diagnosis of an inflamed gut and T2D prior to clinical onset of the disease and will help to advance toward microbial interventions

    Development and evaluation of RNA-seq methods

    Get PDF
    This article is part of the supplement: Beyond the Genome: The true gene count, human evolution and disease genomicsRNA-seq provides insights at multiple levels into the transcription of the genome as it yields sequence, splicing and expression-level information. We have been developing and comparing a wide range of RNA-seq methods for their ability to annotate transcribed genomic regions, identify differences between normal and cancer states, and quantify mRNA expression levels. We will present results in two areas: (i) strand-specific RNA-seq; and (ii) RNA-seq starting from total RNA. Strand-specific RNA-seq is a powerful tool for novel transcript discovery and genome annotation because it enables the identification of the strand of origin for non-coding RNA and anti-sense RNA, as well as defining the ends of adjacent or overlapping transcripts transcribed in different directions. Using the well-annotated Saccharomyces cerevisiae transcriptome as a benchmark, we directly compared seven library construction protocols, including both published and our own novel methods. We found marked differences in strand-specificity, library complexity, evenness and continuity of coverage, agreement with known annotations, and accuracy for expression profiling. Weighing the performance and ease of conducting each method, we identified the dUTP second strand marking [1] and the Illumina RNA ligation methods as the leading protocols, with the former benefitting from the current availability of paired-end sequencing. Our analysis provides a comprehensive benchmark, and our computational pipeline is applicable for assessment of future protocols in other organisms. RNA-seq methods that do not require the purification of mRNA will be valuable for several applications, including samples with low input amounts and/or partial degradation. In these experiments, it is necessary to reduce the fraction of sequencing reads derived from ribosomal RNA. We will present results from multiple approaches, including the use of Not-So-Random (NSR) primers for reverse transcription [2] and the NuGEN Ovation RNA-Seq kit

    Comprehensive comparative analysis of strand-specific RNA sequencing methods

    Get PDF
    Strand-specific, massively parallel cDNA sequencing (RNA-seq) is a powerful tool for transcript discovery, genome annotation and expression profiling. There are multiple published methods for strand-specific RNA-seq, but no consensus exists as to how to choose between them. Here we developed a comprehensive computational pipeline to compare library quality metrics from any RNA-seq method. Using the well-annotated Saccharomyces cerevisiae transcriptome as a benchmark, we compared seven library-construction protocols, including both published and our own methods. We found marked differences in strand specificity, library complexity, evenness and continuity of coverage, agreement with known annotations and accuracy for expression profiling. Weighing each method's performance and ease, we identified the dUTP second-strand marking and the Illumina RNA ligation methods as the leading protocols, with the former benefitting from the current availability of paired-end sequencing. Our analysis provides a comprehensive benchmark, and our computational pipeline is applicable for assessment of future protocols in other organisms.Howard Hughes Medical InstituteUnited States-Israel Binational Science Foundatio

    Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life

    Get PDF
    The human gut microbiome matures towards the adult composition during the first years of life and is implicated in early immune development. Here, we investigate the effects of microbial genomic diversity on gut microbiome development using integrated early childhood data sets collected in the DIABIMMUNE study in Finland, Estonia and Russian Karelia. We show that gut microbial diversity is associated with household location and linear growth of children. Single nucleotide polymorphism- and metagenomic assembly-based strain tracking revealed large and highly dynamic microbial pangenomes, especially in the genus Bacteroides, in which we identified evidence of variability deriving from Bacteroides-targeting bacteriophages. Our analyses revealed functional consequences of strain diversity; only 10% of Finnish infants harboured Bifidobacterium longum subsp. infantis, a subspecies specialized in human milk metabolism, whereas Russian infants commonly maintained a probiotic Bifidobacterium bifidum strain in infancy. Groups of bacteria contributing to diverse, characterized metabolic pathways converged to highly subject-specific configurations over the first two years of life. This longitudinal study extends the current view of early gut microbial community assembly based on strain-level genomic variation.Peer reviewe

    The Treatment-Naive Microbiome in New-Onset Crohn’s Disease

    Get PDF
    Inflammatory bowel diseases (IBDs), including Crohn's disease (CD), are genetically linked to host pathways that implicate an underlying role for aberrant immune responses to intestinal microbiota. However, patterns of gut microbiome dysbiosis in IBD patients are inconsistent among published studies. Using samples from multiple gastrointestinal locations collected prior to treatment in new-onset cases, we studied the microbiome in the largest pediatric CD cohort to date. An axis defined by an increased abundance in bacteria which include Enterobacteriaceae, Pasteurellacaea, Veillonellaceae, and Fusobacteriaceae, and decreased abundance in Erysipelotrichales, Bacteroidales, and Clostridiales, correlates strongly with disease status. Microbiome comparison between CD patients with and without antibiotic exposure indicates that antibiotic use amplifies the microbial dysbiosis associated with CD. Comparing the microbial signatures between the ileum, the rectum, and fecal samples indicates that at this early stage of disease, assessing the rectal mucosal-associated microbiome offers unique potential for convenient and early diagnosis of CD

    A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients

    Get PDF
    Background: Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that is associated with changes in the gut microbiome. Here, we sought to identify strain-specific functional correlates with IBD outcomes. Methods: We performed metagenomic sequencing of monthly stool samples from 20 IBD patients and 12 controls (266 total samples). These were taxonomically profiled with MetaPhlAn2 and functionally profiled using HUMAnN2. Differentially abundant species were identified using MaAsLin and strain-specific pangenome haplotypes were analyzed using PanPhlAn. Results: We found a significantly higher abundance in patients of facultative anaerobes that can tolerate the increased oxidative stress of the IBD gut. We also detected dramatic, yet transient, blooms of Ruminococcus gnavus in IBD patients, often co-occurring with increased disease activity. We identified two distinct clades of R. gnavus strains, one of which is enriched in IBD patients. To study functional differences between these two clades, we augmented the R. gnavus pangenome by sequencing nine isolates from IBD patients. We identified 199 IBD-specific, strain-specific genes involved in oxidative stress responses, adhesion, iron-acquisition, and mucus utilization, potentially conferring an adaptive advantage for this R. gnavus clade in the IBD gut. Conclusions: This study adds further evidence to the hypothesis that increased oxidative stress may be a major factor shaping the dysbiosis of the microbiome observed in IBD and suggests that R. gnavus may be an important member of the altered gut community in IBD. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0490-5) contains supplementary material, which is available to authorized users
    corecore