126 research outputs found

    Competitive Trace Theory: A Role for the Hippocampus in Contextual Interference during Retrieval.

    Get PDF
    Much controversy exists regarding the role of the hippocampus in retrieval. The two dominant and competing accounts have been the Standard Model of Systems Consolidation (SMSC) and Multiple Trace Theory (MTT), which specifically make opposing predictions as to the necessity of the hippocampus for retrieval of remote memories. Under SMSC, memories eventually become independent of the hippocampus as they become more reliant on cortical connectivity, and thus the hippocampus is not required for retrieval of remote memories, only recent ones. MTT on the other hand claims that the hippocampus is always required no matter the age of the memory. We argue that this dissociation may be too simplistic, and a continuum model may be better suited to address the role of the hippocampus in retrieval of remote memories. Such a model is presented here with the main function of the hippocampus during retrieval being "recontextualization," or the reconstruction of memory using overlapping traces. As memories get older, they are decontextualized due to competition among partially overlapping traces and become more semantic and reliant on neocortical storage. In this framework dubbed the Competitive Trace Theory (CTT), consolidation events that lead to the strengthening of memories enhance conceptual knowledge (semantic memory) at the expense of contextual details (episodic memory). As a result, remote memories are more likely to have a stronger semantic representation. At the same time, remote memories are also more likely to include illusory details. The CTT is a novel candidate model that may provide some resolution to the memory consolidation debate

    Overnight olfactory enrichment using an odorant diffuser improves memory and modifies the uncinate fasciculus in older adults

    Get PDF
    ObjectiveCognitive loss in older adults is a growing issue in our society, and there is a need to develop inexpensive, simple, effective in-home treatments. This study was conducted to explore the use of olfactory enrichment at night to improve cognitive ability in healthy older adults.MethodsMale and female older adults (N = 43), age 60–85, were enrolled in the study and randomly assigned to an Olfactory Enriched or Control group. Individuals in the enriched group were exposed to 7 different odorants a week, one per night, for 2 h, using an odorant diffuser. Individuals in the control group had the same experience with de minimis amounts of odorant. Neuropsychological assessments and fMRI scans were administered at the beginning of the study and after 6 months.ResultsA statistically significant 226% improvement was observed in the enriched group compared to the control group on the Rey Auditory Verbal Learning Test and improved functioning was observed in the left uncinate fasciculus, as assessed by mean diffusivity.ConclusionMinimal olfactory enrichment administered at night produces improvements in both cognitive and neural functioning. Thus, olfactory enrichment may provide an effective and low-effort pathway to improved brain health

    Pupil dynamics during very light exercise predict benefits to prefrontal cognition

    Get PDF
    軽運動の前頭前野機能向上効果は瞳に映る. 京都大学プレスリリース. 2023-07-12.Physical exercise, even stress-free very-light-intensity exercise such as yoga and very slow running, can have beneficial effects on executive function, possibly by potentiating prefrontal cortical activity. However, the exact mechanisms underlying this potentiation have not been identified. Evidence from studies using pupillometry demonstrates that pupil changes track the real-time dynamics of activity linked to arousal and attention, including neural circuits from the locus coeruleus to the cortex. This makes it possible to examine whether pupil-linked brain dynamics induced during very-light-intensity exercise mediate benefits to prefrontal executive function in healthy young adults. In this experiment, pupil diameter was measured during 10 min of very-light-intensity exercise (30% V̇o2peak). A Stroop task was used to assess executive function before and after exercise. Prefrontal cortical activation during the task was assessed using multichannel functional near-infrared spectroscopy (fNIRS). We observed that very-light-intensity exercise significantly elicited pupil dilation, reduction of Stroop interference, and task-related left dorsolateral prefrontal cortex activation compared with the resting-control condition. The magnitude of change in pupil dilation predicted the magnitude of improvement in Stroop performance. In addition, causal mediation analysis showed that pupil dilation during very-light-intensity exercise robustly determined subsequent enhancement of Stroop performance. This finding supports our hypothesis that the pupil-linked mechanisms, which may be tied to locus coeruleus activation, are a potential mechanism by which very light exercise enhances prefrontal cortex activation and executive function. It also suggests that pupillometry may be a useful tool to interpret the beneficial impact of exercise on boosting cognition

    Elevated activity of the sympathetic nervous system is related to diminished practice effects in memory:A pilot study

    Get PDF
    BACKGROUND: Reductions in memory practice effects have gained interest as risk factor for future cognitive decline. Practice effects vary with age and can be moderated by factors such as individual variability in arousal or stress experience acting as an additional cognitive load. OBJECTIVE: In the current pilot study, we examined whether sympathetic nervous system activation moderates the relationship between age and practice effects. METHODS: Thirty cognitively healthy individuals aged 40–70 years performed a mnemonic discrimination task twice. Salivary alpha amylase (sAA) samples were obtained at different time points as a proxy of sympathetic activity. Spearman correlations examined the relation between practice effects and sAA. Subsequently, age by sAA interactions on practice scores were explored with bootstrapped linear regression models. Additionally, participants were divided in learners (exhibiting practice effects) and non-learners based on the difference in mnemonic discrimination performance. RESULTS: Higher age and baseline SNS activity were independently related to lower practice effects. The non-learners showed significantly higher sAA scores at all time points compared to learners. Among the learners, baseline-adjusted lower levels of sAA after encoding were associated with greater practice effects, particularly in middle-aged individuals. No such interaction was observed for non-learners. CONCLUSION: These results show that higher baseline sympathetic activation is associated with worse practice effects independently of age. Additionally, in a subgroup of middle-aged learners practice effects were observed when sympathetic activity remained low during learning. These findings suggest that elevated sympathetic nervous system activation may be a promising indicator of imminent cognitive decline

    Aberrant Maturation of the Uncinate Fasciculus Follows Exposure to Unpredictable Patterns of Maternal Signals

    Get PDF
    Across species, unpredictable patterns of maternal behavior are emerging as novel predictors of aberrant cognitive and emotional outcomes later in life. In animal models, exposure to unpredictable patterns of maternal behavior alters brain circuit maturation and cognitive and emotional outcomes. However, whether exposure to such signals in humans alters the development of brain pathways is unknown. In mother–child dyads, we tested the hypothesis that exposure to more unpredictable maternal signals in infancy is associated with aberrant maturation of corticolimbic pathways. We focused on the uncinate fasciculus, the primary fiber bundle connecting the amygdala to the orbitofrontal cortex and a key component of the medial temporal lobe–prefrontal cortex circuit. Infant exposure to unpredictable maternal sensory signals was assessed at 6 and 12 months. Using high angular resolution diffusion imaging, we quantified the integrity of the uncinate fasciculus using generalized fractional anisotropy (GFA). Higher maternal unpredictability during infancy presaged greater uncinate fasciculus GFA in children 9–11 years of age (n = 69, 29 female). In contrast to the uncinate, GFA of a second corticolimbic projection, the hippocampal cingulum, was not associated with maternal unpredictability. Addressing the overall functional significance of the uncinate and cingulum relationships, we found that the resulting imbalance of medial temporal lobe–prefrontal cortex connectivity partially mediated the association between unpredictable maternal sensory signals and impaired episodic memory function. These results suggest that unbalanced maturation of corticolimbic circuits is a mechanism by which early unpredictable sensory signals may impact cognition later in life

    Aerobic fitness associates with mnemonic discrimination as a mediator of physical activity effects: evidence for memory flexibility in young adults

    Get PDF
    A physically active lifestyle has beneficial effects on hippocampal memory function. A potential mechanism for this effect is exercise-enhanced hippocampal plasticity, particularly in the dentate gyrus (DG). Within hippocampal memory formation, the DG plays a crucial role in pattern separation, which is the ability to discriminate among similar experiences. Computational models propose a theoretical hypothesis that enhanced DG-mediated pattern separation leads to “memory flexibility”–a selective improvement in the ability to overcome moderate levels of mnemonic interference. Thus, in the current cross-sectional study of healthy young adults, we tested the working hypothesis that aerobic fitness, as a physiological indicator of endurance capacity associated with physical activity, is strongly associated with mnemonic discrimination at moderate interference levels. When divided the sample (n = 75) based on a median split of aerobic fitness, the higher fitness group had better discrimination performance for moderate interference levels compared to the lower fitness group, namely, exhibited memory flexibility. Moreover, aerobic fitness levels were positively associated with discrimination performance for moderate interference levels, as a mediator of physical activity effects. This evidence suggests that aerobic fitness levels are associated with hippocampal DG-related memory, which is consistent with literature showing positive effect of physical exercise on hippocampal memory

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link
    corecore