15 research outputs found

    Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules

    No full text
    Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them

    Preserving catalytic activity and enhancing biochemical stability of the therapeutic enzyme asparaginase by biocompatible multilayered polyelectrolyte microcapsules

    No full text
    The present study focuses on the formation of microcapsules containing catalytically active L-asparaginase (L-ASNase), a protein drug of high value in antileukemic therapy. We make use of the layer-by-layer (LbL) technique to coat protein-loaded calcium carbonate (CaCO3) particles with two or three poly dextran/poly-L-arginine-based bilayers. To achieve high loading efficiency, the CaCO3 template was generated by coprecipitation with the enzyme. After assembly of the polymer shell, the CaCO3 core material was dissolved under mild conditions by dialysis against 20 mM EDTA. Biochemical stability of the encapsulated L-asparaginase was analyzed by treating the capsules with the proteases trypsin and thrombin, which are known to degrade and inactivate the enzyme during leukemia treatment, allowing us to test for resistance against proteolysis by physiologically relevant proteases through measurement of residual L-asparaginase activities. In addition, the thermal stability, the stability at the physiological temperature, and the long-term storage stability of the encapsulated enzyme were investigated. We show that encapsulation of L-asparaginase remarkably improves both proteolytic resistance and thermal inactivation at 37 degrees C, which could considerably prolong the enzyme's in vivo half-life during application in acute lymphoblastic leukemia (ALL). Importantly, the use of low EDTA concentrations for the dissolution of CaCO3 by dialysis could be a general approach in cases where the activity of sensitive biomacromolecules is inhibited, or even irreversibly damaged, when standard protocols for fabrication of such LbL microcapsules are used. Encapsulated and free enzyme showed similar efficacies in driving leukemic cells to apoptosis

    Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells

    No full text
    A nanoplasmonics-based opto-nanoporation method of creating nanopores upon laser illumination is applied for inducing diffusion and triggered release of small and large molecules from red blood cells (RBCs). The method is Implemented using absorbing gold nanoparticle (Au-NP) aggregates on the membrane of loaded RBCs, which, upon near-IR laser light absorption, induce release of encapsulated molecules from selected cells. The binding of Au-NPs to RBCs is characterized by Raman spectroscopy. The process of release Is driven by heating localized at nanoparticles, which impacts the permeability of the membrane by affecting the lipid bilayer and/or trans-membrane proteins. Localized heating and temperature rise around Au-NP aggregates is simulated and discussed. Research reported in this work is relevant for generating nanopores for biomolecule trafficking through polymeric and lipid membranes as well as cell membranes, while dual- and multi-molecule release is relevant for theragnostics and a wide range of therapies

    Hollow silver alginate microspheres for drug delivery and surface enhanced Raman scattering detection

    No full text
    Multifunctional silver alginate hydrogel microspheres are assembled via a template assisted approach using calcium carbonate cores. Sodium alginate is immobilized into the highly porous structure of calcium carbonate microspheres followed by cross-linking in the presence of silver ions. The simultaneous processes of the growth of silver nanoparticles in the alginate matrix and the removal of the calcium carbonate template are triggered by ascorbic acid. The abundance of silver nanoparticles and their interparticular junctions in the alginate network allow for the detection of solutes using Raman spectroscopy using the surface of the plasmonic microspheres. Rhodamine B was used to illustrate the potential applications of such multifunctional plasmonic alginate hydrogel microspheres for sensing at low concentrations. A proof of principle for using such particles for the quick identification of microorganisms is then demonstrated using the Escherichia coli bacterium

    Anisotropic multicompartment micro- and nano-capsules produced via embedding into biocompatible PLL/HA films

    No full text
    We present a novel strategy to fabricate anisotropic multi-compartment Janus capsules by embedding larger containers into a soft poly-L-lysine/hyaluronic acid (PLL/HA) polymeric film, followed by adsorption of smaller containers on top of their unmasked surface. This research is also attractive for developing substrates for cell cultures

    Preserving Catalytic Activity and Enhancing Biochemical Stability of the Therapeutic Enzyme Asparaginase by Biocompatible Multilayered Polyelectrolyte Microcapsules

    No full text
    The present study focuses on the formation of microcapsules containing catalytically active l-asparaginase (L-ASNase), a protein drug of high value in antileukemic therapy. We make use of the layer-by-layer (LbL) technique to coat protein-loaded calcium carbonate (CaCO<sub>3</sub>) particles with two or three poly dextran/poly-l-arginine-based bilayers. To achieve high loading efficiency, the CaCO<sub>3</sub> template was generated by coprecipitation with the enzyme. After assembly of the polymer shell, the CaCO<sub>3</sub> core material was dissolved under mild conditions by dialysis against 20 mM EDTA. Biochemical stability of the encapsulated l-asparaginase was analyzed by treating the capsules with the proteases trypsin and thrombin, which are known to degrade and inactivate the enzyme during leukemia treatment, allowing us to test for resistance against proteolysis by physiologically relevant proteases through measurement of residual l-asparaginase activities. In addition, the thermal stability, the stability at the physiological temperature, and the long-term storage stability of the encapsulated enzyme were investigated. We show that encapsulation of l-asparaginase remarkably improves both proteolytic resistance and thermal inactivation at 37 °C, which could considerably prolong the enzyme’s in vivo half-life during application in acute lymphoblastic leukemia (ALL). Importantly, the use of low EDTA concentrations for the dissolution of CaCO<sub>3</sub> by dialysis could be a general approach in cases where the activity of sensitive biomacromolecules is inhibited, or even irreversibly damaged, when standard protocols for fabrication of such LbL microcapsules are used. Encapsulated and free enzyme showed similar efficacies in driving leukemic cells to apoptosis

    Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells

    No full text
    A nanoplasmonics-based opto-nanoporation method of creating nanopores upon laser illumination is applied for inducing diffusion and triggered release of small and large molecules from red blood cells (RBCs). The method is implemented using absorbing gold nanoparticle (Au-NP) aggregates on the membrane of loaded RBCs, which, upon near-IR laser light absorption, induce release of encapsulated molecules from selected cells. The binding of Au-NPs to RBCs is characterized by Raman spectroscopy. The process of release is driven by heating localized at nanoparticles, which impacts the permeability of the membrane by affecting the lipid bilayer and/or trans-membrane proteins. Localized heating and temperature rise around Au-NP aggregates is simulated and discussed. Research reported in this work is relevant for generating nanopores for biomolecule trafficking through polymeric and lipid membranes as well as cell membranes, while dual- and multi-molecule release is relevant for theragnostics and a wide range of therapies

    SERS Platform Based on Hollow-Core Microstructured Optical Fiber: Technology of UV-Mediated Gold Nanoparticle Growth

    No full text
    Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for biosensing. However, SERS analysis has several concerns: the signal is limited by a number of molecules and the area of the plasmonic substrate in the laser hotspot, and quantitative analysis in a low-volume droplet is confusing due to the change of concentration during quick drying. The usage of hollow-core microstructured optical fibers (HC-MOFs) is thought to be an effective way to improve SERS sensitivity and limit of detection through the effective irradiation of a small sample volume filling the fiber capillaries. In this paper, we used layer-by-layer assembly as a simple method for the functionalization of fiber capillaries by gold nanoparticles (seeds) with a mean diameter of 8 nm followed by UV-induced chloroauric acid reduction. We also demonstrated a simple and quick technique used for the analysis of the SERS platform formation at every stage through the detection of spectral shifts in the optical transmission of HC-MOFs. The enhancement of the Raman signal of a model analyte Rhodamine 6G was obtained using such type of SERS platform. Thus, a combination of nanostructured gold coating as a SERS-active surface and a hollow-core fiber as a microfluidic channel and a waveguide is perspective for point-of-care medical diagnosis based on liquid biopsy and exhaled air analysis
    corecore