6 research outputs found

    Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO2 Emissions. Part I: Process Development and Technical Performance

    No full text
    A novel polygeneration process is presented in this paper that co-produces olefins, methanol, dimethyl ether, and electricity from conventional pipeline natural gas and different kinds of shale gases. Technical analyses of many variants of the process are performed, considering differences in power generation strategy and gas type. The technical analysis results show that the efficiency of the plant varies between 22%–57% (HHV) depending on the product portfolio. The efficiency is higher than a traditional methanol-to-olefin process, which enables it to be competitive with traditional naphtha cracking plants

    Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO2 Emissions. Part II: Economic Performance

    No full text
    In this paper, techno-economic analyses of a polygeneration system for the production of olefins, transportation fuels and electricity are performed, considering various process options. Derivative-free optimization algorithms were coupled with Aspen Plus simulation models to determine the optimum product portfolio as a function of a wide variety of market prices. The optimization results show that the proposed plant is capable of producing olefins with the same production costs as traditional petrochemical routes while having effectively zero process CO2 emissions (including the utilities). This provides an economic and more sustainable alternative to traditional naphtha cracking

    Power-to-Gas Implementation for a Polygeneration System in Southwestern Ontario

    No full text
    Canada has stockpiles of waste petroleum coke, a high carbon waste product leftover from oil production with little positive market value. A polygeneration process is proposed which implements “power-to-gas” technology, through the use of electrolysis and surplus grid electricity, to use waste petroleum coke and biomass to create a carbon monoxide-rich stream after gasification, which is then converted into a portfolio of value-added products with the addition of hydrogen. A model implementing mixed-integer linear programming integrates power-to-gas technology and AspenPlus simulates the polygeneration process. The downstream production rates are selected using particle swarm optimization. When comparing 100% electrolysis vs. 100% steam reforming as a source of hydrogen production, electrolysis provides a larger net present value due to the carbon pricing introduced in Canada and the cost reduction from removal of the air separation unit by using the oxygen from the electrolysers. The optimal percent of hydrogen produced from electrolysis is about 82% with a hydrogen input of 7600 kg/h. The maximum net present value is 332Mwhenover75332 M when over 75% production rate is dimethyl ether or 203 M when the dimethyl ether is capped at 50% production. The polygeneration plant is an example of green technology used to environmentally process Canada’s petroleum coke
    corecore