1,001 research outputs found

    Quantum and classical correlations in waveguide lattices

    Full text link
    We study quantum and classical Hanbury Brown-Twiss correlations in waveguide lattices. We develop a theory for the propagation of photon pairs in the lattice, predicting the emergence of nontrivial quantum interferences unique to lattice systems. Experimentally, we observe the classical counterpart of these interferences using intensity correlation measurements. We discuss the correspondence between the classical and quantum correlations, and consider path-entangled input states which do not have a classical analogue. Our results demonstrate that waveguide lattices can be used as a robust and highly controllable tool for manipulating quantum states, and offer new ways of studying the quantum properties of light.Comment: Comments are welcom

    The VERNALIZATION 2 Gene Mediates the Epigenetic Regulation of Vernalization in Arabidopsis

    Get PDF
    AbstractThe acceleration of flowering by a long period of low temperature, vernalization, is an adaptation that ensures plants overwinter before flowering. Vernalization induces a developmental state that is mitotically stable, suggesting that it may have an epigenetic basis. The VERNALIZATION2 (VRN2) gene mediates vernalization and encodes a nuclear-localized zinc finger protein with similarity to Polycomb group (PcG) proteins of plants and animals. In wild-type Arabidopsis, vernalization results in the stable reduction of the levels of the floral repressor FLC. In vrn2 mutants, FLC expression is downregulated normally in response to vernalization, but instead of remaining low, FLC mRNA levels increase when plants are returned to normal temperatures. VRN2 function therefore stably maintains FLC repression after a cold treatment, serving as a mechanism for the cellular memory of vernalization

    Why pinning by surface irregularities can explain the peak effect in transport properties and neutron diffraction results in NbSe2 and Bi-2212 crystals?

    Full text link
    The existence of a peak effect in transport properties (a maximum of the critical current as function of magnetic field) is a well-known but still intriguing feature of type II superconductors such as NbSe2 and Bi-2212. Using a model of pinning by surface irregularities in anisotropic superconductors, we have developed a calculation of the critical current which allows estimating quantitatively the critical current in both the high critical current phase and in the low critical current phase. The only adjustable parameter of this model is the angle of the vortices at the surface. The agreement between the measurements and the model is really very impressive. In this framework, the anomalous dynamical properties close to the peak effect is due to co-existence of two different vortex states with different critical currents. Recent neutron diffraction data in NbSe2 crystals in presence of transport current support this point of view

    Budget feasible mechanism design

    Full text link

    Equilibration and Dynamic Phase Transitions of a Driven Vortex Lattice

    Full text link
    We report on the observation of two types of current driven transitions in metastable vortex lattices. The metastable states, which are missed in usual slow transport measurements, are detected with a fast transport technique in the vortex lattice of undoped 2H-NbSe2_2. The transitions are seen by following the evolution of these states when driven by a current. At low currents we observe an equilibration transition from a metastable to a stable state, followed by a dynamic crystallization transition at high currents.Comment: 5 pages, 4 figure

    Comparison of Different Anthropometric Measurements and Inflammatory Biomarkers

    Get PDF
    Introduction. Different anthropometric variables have been shown to be related to cardiovascular morbidity and mortality. Our aim was to compare the association between different anthropometric measurements and inflammatory status. Methods and results. A cross-sectional study design in which we analyzed the data collected during a five-year period in the Tel Aviv Medical Center Inflammation Survey (TAMCIS). Included in the study were 13,033 apparently healthy individuals at a mean (SD) age of 43. Of these, 8,292 were male and 4,741 female. A significant age-adjusted and multiple-adjusted partial correlation was noted between all anthropometric measurements and all inflammatory biomarkers. There was no significant difference in the correlation coefficients between different biomarkers and anthropometric variables. Conclusion. Most of the common used anthropometric variables are similarly correlated with inflammatory variables. The clinician can choose the variable that he/she finds easiest to use

    Large Charge Four-Dimensional Extremal N=2 Black Holes with R^2-Terms

    Full text link
    We consider N=2 supergravity in four dimensions with small R^2 curvature corrections. We construct large charge extremal supersymmetric and non-supersymmetric black hole solutions in all space, and analyze their thermodynamic properties.Comment: 18 pages. v2,3: minor fixe

    Characterizing and Modeling Control-Plane Traffic for Mobile Core Network

    Full text link
    In this paper, we first carry out to our knowledge the first in-depth characterization of control-plane traffic, using a real-world control-plane trace for 37,325 UEs sampled at a real-world LTE Mobile Core Network (MCN). Our analysis shows that control events exhibit significant diversity in device types and time-of-day among UEs. Second, we study whether traditional probability distributions that have been widely adopted for modeling Internet traffic can model the control-plane traffic originated from individual UEs. Our analysis shows that the inter-arrival time of the control events as well as the sojourn time in the UE states of EMM and ECM for the cellular network cannot be modeled as Poisson processes or other traditional probability distributions. We further show that the reasons that these models fail to capture the control-plane traffic are due to its higher burstiness and longer tails in the cumulative distribution than the traditional models. Third, we propose a two-level hierarchical state-machine-based traffic model for UE clusters derived from our adaptive clustering scheme based on the Semi-Markov Model to capture key characteristics of mobile network control-plane traffic -- in particular, the dependence among events generated by each UE, and the diversity in device types and time-of-day among UEs. Finally, we show how our model can be easily adjusted from LTE to 5G to support modeling 5G control-plane traffic, when the sizable control-plane trace for 5G UEs becomes available to train the adjusted model. The developed control-plane traffic generator for LTE/5G networks is open-sourced to the research community to support high-performance MCN architecture design R&D

    Irreversible magnetization in thin YBCO films rotated in external magnetic field

    Full text link
    The magnetization M of a thin YBaCuO film is measured as a function of the angle θ\theta between the applied field H and the c-axis. For fields above the first critical field, but below the Bean's field for first penetration H*, M is symmetric with respect to θ=π\theta =\pi and the magnetization curves for forward and backward rotation coincide. For H>H* the curves are asymmetric and they do not coincide. These phenomena have a simple explanation in the framework of the Bean critical state model.Comment: 14 pages, 7 PostScript figure
    corecore