55 research outputs found

    ДослідТСння Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— ΠΊΠΎΡ€ΠΎΠ·Ρ–Ρ— ΠΌΡ–Π΄Ρ– Ρ– Π°Π»ΡŽΠΌΡ–Π½Ρ–ΡŽ Ρ‚Π° Π°Π½Π°Π»Ρ–Π· ΠΊΡ–Π½Π΅Ρ‚ΠΈΠΊΠΈ зникнСння Ρ–Π½Ρ‚Π΅Ρ€ΠΌΠ΅Ρ‚Π°Π»Ρ–Π΄Ρ–Π² Ρƒ систСмі Cu-Al

    Get PDF
    Copper and aluminum electric corrosion is investigated experimentally. It is founded that copper corrosion is higher than aluminum corrosion. Intermetallics disappearance rate in Cu-Al system is analyzing theoretically. Literature experimental data are used for analysis.Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ дослідТСно Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρƒ ΠΊΠΎΡ€ΠΎΠ·Ρ–ΡŽ ΠΌΡ–Π΄Ρ– Ρ‚Π° Π°Π»ΡŽΠΌΡ–Π½Ρ–ΡŽ. ΠžΡ€ΠΈΠΌΠ°Π½ΠΎ Ρ‚Π°ΠΊΠΈΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚: Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π° корозія ΠΌΡ–Π΄Ρ– Π·Π½Π°Ρ‡Π½ΠΎ швидша, Π½Ρ–ΠΆ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π° корозія Π°Π»ΡŽΠΌΡ–Π½Ρ–ΡŽ, Ρ‚ΠΎΠΌΡƒ Ρ‚ΠΎΠ½ΠΊΠ΅ Π°Π»ΡŽΠΌΡ–Π½Ρ–Ρ”Π²Π΅ покриття Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΎΡŽ близько 1 ΠΌΡ–ΠΊΡ€ΠΎΠΌΠ΅Ρ‚Ρ€Π° Π½Π° ΠΌΡ–Π΄Π½ΠΈΡ… Π΄Ρ€ΠΎΡ‚ΠΈΠ½ΠΊΠ°Ρ… ΠΌΠΎΠΆΠ΅ ΡƒΠΏΠΎΠ²Ρ–Π»ΡŒΠ½ΠΈΡ‚ΠΈ ΠΊΠΎΡ€ΠΎΠ·Ρ–ΡŽ ΠΌΡ–Π΄Ρ– Ρƒ ΠΏΡ€ΠΈΠ»Π°Π΄Π°Ρ… ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–ΠΊΠΈ. Π’Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎ ΠΏΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΎ процСс зникнСння Ρ–Π½Ρ‚Π΅Ρ€ΠΌΠ΅Ρ‚Π°Π»Ρ–Π΄Ρ–Π² Ρƒ систСмі Cu-Al. Для Π°Π½Π°Π»Ρ–Π·Ρƒ Π±ΡƒΠ»ΠΈ використані Π»Ρ–Ρ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ– Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Π΄Π°Π½Ρ–

    MATHEMATICAL METHODS OF THE INTERMEDIATE PHASE GROWTH DESCRIBING

    Get PDF
    A model of describing the diffusion phase growth from point sources inside polycrystals grains is regarded. Analytical method to solve differential diffusion equations for such model is suggested. Analytical method to solve differential diffusion equations of describing the growth of the phase wedge during the intermetallic compound formation with a narrow concentration range of homogeneity in bicrystals is proposed. Parabolic, cubic, fourth power diffusion regimes for different scales from nanometers to micrometers and millimeters are analyzed.Key words: diffusion, reaction, phase growth law, intermetallic compounds, grain boundaries.ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚ Ρ„Ρ–Π·ΠΈΠΊΠΎ-ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π½Π°ΡƒΠΊ, Π΄ΠΎΡ†Π΅Π½Ρ‚ Π―Ρ€ΠΌΠΎΠ»Π΅Π½ΠΊΠΎ М. Π’. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ опису росту ΠΏΡ€ΠΎΠΌΡ–ΠΆΠ½ΠΎΡ— Ρ„Π°Π·ΠΈ / ΠšΠΈΡ—Π²ΡΡŒΠΊΠΈΠΉ Π½Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΠΉ унівСрситСт Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–ΠΉ Ρ‚Π° Π΄ΠΈΠ·Π°ΠΉΠ½Ρƒ, Π£ΠΊΡ€Π°Ρ—Π½Π°, Π§Π΅Ρ€ΠΊΠ°ΡΠΈΠ ΠΎΠ·Π³Π»ΡΠ΄Π°Ρ”Ρ‚ΡŒΡΡ модСль, яка описує ΠΊΡ–Π½Π΅Ρ‚ΠΈΠΊΡƒ утворСння Ρ–Π½Ρ‚Π΅Ρ€ΠΌΠ΅Ρ‚Π°Π»Π΅Π²ΠΎΡ— Ρ„Π°Π·ΠΈ Π· Ρ‚ΠΎΡ‡ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΆΠ΅Ρ€Π΅Π»Π° всСрСдині полікристалічних Π·Π΅Ρ€Π΅Π½. ΠŸΡ€ΠΎΠΏΠΎΠ½ΡƒΡ”Ρ‚ΡŒΡΡ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΈΠΉ Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ розв’язування Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ рівняння Ρ‚Π°ΠΊΠΎΡ— ΠΌΠΎΠ΄Π΅Π»Ρ–. ΠŸΡ€ΠΎΠΏΠΎΠ½ΡƒΡ”Ρ‚ΡŒΡΡ Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ розв’язування Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ рівняння, якС описує ΠΊΡ–Π½Π΅Ρ‚ΠΈΠΊΡƒ утворСння Ρ–Π½Ρ‚Π΅Ρ€ΠΌΠ΅Ρ‚Π°Π»Π΅Π²ΠΎΡ— Ρ„Π°Π·ΠΈ Π²Π·Π΄ΠΎΠ²ΠΆ Π³Ρ€Π°Π½ΠΈΡ†Ρ– ΠΌΡ–ΠΆ Π·Π΅Ρ€Π½Π°ΠΌΠΈ Π· одночасним проникнСнням Ρƒ самі Π·Π΅Ρ€Π½Π°. ΠΠ½Π°Π»Ρ–Π·ΡƒΡŽΡ‚ΡŒΡΡ Π΄ΠΈΡ„ΡƒΠ·Ρ–ΠΉΠ½Ρ– Ρ€Π΅ΠΆΠΈΠΌΠΈ (ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ–Ρ‡Π½ΠΈΠΉ, ΠΊΡƒΠ±Ρ–Ρ‡Π½ΠΈΠΉ, Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ³ΠΎ стСпСня) для Ρ€Ρ–Π·Π½ΠΈΡ… ΠΌΠ°ΡΡˆΡ‚Π°Π±Ρ–Π²: Π²Ρ–Π΄ Π½Π°Π½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΎ ΠΌΡ–ΠΊΡ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Ρ– ΠΌΡ–Π»Ρ–ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ.ΠšΠ»ΡŽΡ‡ΠΎΠ²Ρ– слова: дифузія, Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ—, Π·Π°ΠΊΠΎΠ½ росту Ρ„Π°Π·ΠΈ, Ρ–Π½Ρ‚Π΅Ρ€ΠΌΠ΅Ρ‚Π°Π»Π΅Π²Ρ– сполуки, ΠΌΡ–ΠΆΡ„Π°Π·Π½Ρ– Π³Ρ€Π°Π½ΠΈΡ†Ρ–.ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π½Π°ΡƒΠΊ, Π΄ΠΎΡ†Π΅Π½Ρ‚ Π―Ρ€ΠΌΠΎΠ»Π΅Π½ΠΊΠΎ М. Π’. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ описания роста ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹ / КиСвский Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ унивСрситСт Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΈ Π΄ΠΈΠ·Π°ΠΉΠ½Π°, Π£ΠΊΡ€Π°ΠΈΠ½Π°, ЧСркассыРассматриваСтся модСль, которая описываСт ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΡƒ образования интСрмСталличСского соСдинСния ΠΈΠ· Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ источника Π²Π½ΡƒΡ‚Ρ€ΠΈ поликристалличСских Π·Π΅Ρ€Π΅Π½. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ аналитичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ уравнСния Ρ‚Π°ΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ аналитичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ уравнСния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ описываСт ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΡƒ образования интСрмСталличСского соСдинСния вдоль Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ Π·Π΅Ρ€Π½Π°ΠΌΠΈ с ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ΠΌ Π² сами Π·Π΅Ρ€Π½Π°. ΠΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ€Π΅ΠΆΠΈΠΌΡ‹ (параболичСский, кубичСский, Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ стСпСни) для Ρ€Π°Π·Π½Ρ‹Ρ… ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΎΠ²: ΠΎΡ‚ наномСтричСского Π΄ΠΎ микромСтричСского ΠΈ ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ.ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: диффузия, Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ, Π·Π°ΠΊΠΎΠ½ роста Ρ„Π°Π·Ρ‹, интСрмСталличСскиС соСдинСния, ΠΌΠ΅ΠΆΡ„Π°Π·Π½Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹

    THE KIRKENDALL EFFECT AND PHASE FORMATION KINETICS DURING SOLID STATE REACTIONS

    Get PDF
    In the article it was proved theoretically and experimentally that the interface curvature can either accelerate or slow down the Kirkendall shift and the diffusion phase layer growth in cylindrical and spherical samples when compared with a planar sample depending on the average phase concentration only. It is shown that internal stress, arising due to dilatation during phase growth, can either accelerate or slow down the growth in addition to the above-mentioned effect, depending on the difference in mobilities of different atoms within each phase and independently on the sign of dilatation.Π£ статті Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎ Ρ‚Π° ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΠ΅Π½ΠΎ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ, Ρ‰ΠΎ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Π° ΠΌΡ–ΠΆΡ„Π°Π·Π½ΠΎΡ— Π³Ρ€Π°Π½ΠΈΡ†Ρ– ΠΌΠΎΠΆΠ΅ як ΠΏΡ€ΠΈΡˆΠ²ΠΈΠ΄ΡˆΡƒΠ²Π°Ρ‚ΠΈ, Ρ‚Π°ΠΊ Ρ– ΡƒΠΏΠΎΠ²Ρ–Π»ΡŒΠ½ΡŽΠ²Π°Ρ‚ΠΈ Π΄ΠΈΡ„ΡƒΠ·Ρ–ΠΉΠ½Π΅ утворСння ΡˆΠ°Ρ€Ρ–Π² Ρ„Π°Π· Ρƒ Ρ†ΠΈΠ»Ρ–Π½Π΄Ρ€ΠΈΡ‡Π½ΠΈΡ… Ρ‚Π° сфСричних Π·Ρ€Π°Π·ΠΊΠ°Ρ… Ρ‚Π° зміщСння ΠšΡ–Ρ€ΠΊΠ΅Π½Π΄Π°Π»Π»Π° Π² залСТності лишС Π²Ρ–Π΄ ΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡ— ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— ΠΎΠ΄Π½Ρ–Ρ”Ρ— Π· Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½. Π”ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΎ Π²ΠΏΠ»ΠΈΠ²Π°Ρ‚ΠΈ Π½Π° ΠΊΡ–Π½Π΅Ρ‚ΠΈΠΊΡƒ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΆ Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ– ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρ– Π½Π°ΠΏΡ€ΡƒΠ³ΠΈ, які Π²ΠΈΠ½ΠΈΠΊΠ°ΡŽΡ‚ΡŒ Ρƒ процСсі фазоутворСння.Β Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ тСорСтичСски ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Π° ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΊΠ°ΠΊ ΡƒΡΠΊΠΎΡ€ΡΡ‚ΡŒ, Ρ‚Π°ΠΊ ΠΈ Π·Π°ΠΌΠ΅Π΄Π»ΡΡ‚ΡŒ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ слоСв Ρ„Π°Π· Π² цилиндричСских ΠΈ сфСричСских ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΈ смСщСниС ΠšΠΈΡ€ΠΊΠ΅Π½Π΄Π°Π»Π»Π° Π² зависимости Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ срСднСй ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· вСщСств. Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΡƒ ΠΌΠΎΠ³ΡƒΡ‚ Ρ‚ΠΎΠΆΠ΅ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ мСханичСскиС напряТСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ Π² процСссС фазообразования.

    The Practice of Using Game Models to Analyze the Risks of the Operation Processes of Agricultural Enterprises Based on the Indicators of Components of Effectiveness

    Get PDF
    The article proposes the methodology of practical use of game theory for analyzing of risks of subprocessions of operational processes of agricultural enterprises on the basis of models of components of effectiveness by Burennikova (Polishchuk) – Yarmolenko and relevant indicators. The methodology is considered on the example of processes of formation of gross incomes at five agricultural enterprises of grain products subcomplex as subprocesses of operational processes of these enterprises. A certain payment matrix for the case of non-strategic game (playing with nature) was built. A gains matrix would generate a risk matrix. Two risk matrices are obtained, depending on the two formulas according to which the elements of these matrices are calculated. According to the data of these two risk matrices, the maximum risk values are found in each row, and two corresponding column matrices are drawn from these values. On the basis of the mentioned column matrices, a ranking of risks of functioning of the considered enterprises is carried out. The article researches the risks of functioning of enterprises in terms of effectiveness. Similarly, one can research the mentioned risks from the standpoint of efficiency

    Dynamics of combined electron beam and laser dispersion of polymers in vacuum

    Get PDF
    The mechanisms of the impact of the laser assisting effect on the dispersion kinetics and on the structure of the deposited layers in electron beam dispersion of a polymer target were analyzed. The proposed model and analytical expressions adequately describe the kinetic dependence of the polymer materials dispersion rate in a vacuum on the intensity of laser processing of their dispersion zone

    Detection of Polynitro Compounds at Low Concentrations by SERS Using Ni@Au Nanotubes

    Full text link
    The identification of high-energy compounds in trace concentrations not only in the laboratory, but also in field conditions is of particular interest. The process should be clear, easy, and well-recognizable. We formed SERS-active substrates by using elongated nickel nanotubes synthesized by electrochemical deposition in the pores of ion-track membranes and coated them with gold for further application in the detection of low concentrations of analytes. The substrates were characterized using various techniques to determine the morphology of the nanotubes and modifying gold layer. The possibility of obtaining two types of gold-layer morphology was shown: in the form of a smooth film up to 20–50 nm thick and a coating with nanoneedles up to 250 nm long. The electric fields around the nanotubes were simulated at a laser wavelength of 532 nm to demonstrate the influence of the gold-layer morphology on the field distribution. The β€œneedle” morphology was chosen to form the most effective SERS-active substrates for detection of low concentrations of aromatic polynitro compounds. The spectral peaks were identified by comparing the model and experimental Raman spectra at concentrations down to 10βˆ’5 M. Within this limit, all peaks (β€œfingerprints” of the substance) were clearly distinguishable. Β© 2022 by the authors.Ministry of Education and Science of the Russian Federation,Β Minobrnauka: AAAA-A20-120061890084-9;Β Russian Science Foundation,Β RSF: 21-72-20158Works on theoretical modeling were carried out within the framework of the State Contract of the Moscow Pedagogical State University (MPGU) β€œPhysics of the perspective materials and nanostructures: basic researches and applications in material sciences, nanotechnologies and photonics” supported by the Ministry of Science and Higher Education of the Russian Federation (AAAA-A20-120061890084-9). S.B. and E.K. (Elizaveta Kozhina) are members of the scientific school SS-776.2022.1.2. Works on NTs fabrication and characterization were supported by the Russian Science Foundation, grant number 21-72-20158 (NTs as tool for magneto-mechanical treatment)

    ΠšΡ–Π½Π΅Ρ‚ΠΈΠΊΠ° росту конуса ΠΏΡ€ΠΎΠΌΡ–ΠΆΠ½ΠΎΡ— Ρ„Π°Π·ΠΈ Π²Π·Π΄ΠΎΠ²ΠΆ дислокаційних Ρ‚Ρ€ΡƒΠ±ΠΎΠΊ всСрСдині Π·Π΅Ρ€Π΅Π½ полікристала

    No full text
    Dislocation-pipe diffusion (DPD) becomes a major contribution to device failure in microelectronic components at working temperatures. Usually, the simple random walk law for diffusion (Type C kinetics t1/2) is employed to calculate of DPD coefficients. The article presents an analytically solvable model of describing the diffusion phase cone growth along dislocation pipes inside polycrystal grains involving outflow from dislocation lines (Type B kinetics). Correlative analytical method to solve differential diffusion equations for such model is suggested. Competition between phase cone growth along dislocation lines involving outflow and phase wedge growth along grain boundaries (GBs) involving outflow is analyzed. It is shown that while phase wedge growth law along GBs is the Fisher regime t1/4, phase cone growth law along dislocation lines is another diffusion regime t1/6 . Real experimental data are analyzed using such diffusion regime. It is shown that it is possible to calculate DPD coefficients not only for the phase cone formation, but for migration of atoms along dislocations and self-diffusion along dislocation pipes too

    A Further Insight Into Spherical Indentation: Ring Crack Formation In A Brittle La0.8Sr0.2Ga0.8Mg0.2O 3 Perovskite

    No full text
    It is known that theoretical considerations of fracture under loading by a spherical indenter are based on the concept of pre-existing cracks. However, nucleation and growth of the critical crack could occur during indentation, as happens during microcracking. The goal of the presented research is to develop a new concept of fracture under spherical indentation in a brittle elastic material taking into account the possibility of critical crack nucleation and growth during loading. La0.8Sr0.2Ga0.8Mg 0.2O3 (LSGM) perovskite has been chosen as a polycrystalline elastic low fracture toughness ceramic to perform indentation using a tungsten carbide spherical indenter. Experimental measurements of ring crack radii for well-polished LSGM cannot be explained within the framework of the pre-existing crack hypothesis. The local risk calculated using the concept of pre-existing cracks gives a most probable range of ring crack radii that does not match the radii measured experimentally. However, the local risk calculated using the assumption of critical crack nucleation and formation during spherical indentation results in a most probable range of ring crack radii which exhibits good agreement with the experimental data. Β© 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved
    • …
    corecore