10 research outputs found
Neuromuscular disease genetics in under-represented populations: increasing data diversity
\ua9 The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses \u27solved\u27 or \u27possibly solved\u27 ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% \u27solved\u27 and ∼13% \u27possibly solved\u27 outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally
Comparative Effects of Education and Bilingualism on the Onset of Mild Cognitive Impairment
Background: Increasing evidence suggests that life course factors such as education and bilingualism may have a protective role against dementia due to Alzheimer disease. This study aimed to compare the effects of education and bilingualism on the onset of cognitive decline at the stage of mild cognitive impairment (MCI). Methods: A total of 115 patients with MCI evaluated in a specialty memory clinic in Hyderabad, India, formed the cohort. MCI was diagnosed according to Petersen's criteria following clinical evaluation and brain imaging. Age at onset of MCI was compared between bilinguals and monolinguals, and across subjects with high and low levels of education, adjusting for possible confounding variables. Results: The bilingual MCI patients were found to have a clinical onset of cognitive complaints 7.4 years later than monolinguals (65.2 vs. 58.1 years; p = 0.004), while years of education was not associated with delayed onset (1-10 years of education, 59.1 years; 11-15 years of education, 62.6 years; >15 years of education, 62.2 years; p = 0.426). Conclusion: The effect of bilingualism is protective against cognitive decline, and lies along a continuum from normal to pathological states. In comparison, the role of years of education is less robust. (C) 2017 S. Karger AG, Base
Longitudinally extensive transverse myelitis due to toxoplasma: An autopsy study
Toxoplasma is an obligate intracellular parasite that remains asymptomatic in humans but, at times, can cause devastating disease. Here, we describe an autopsy study of a young immunocompetent gentleman with no comorbidities whose presentation was acute transverse myelitis. Magnetic resonance imaging spine showed longitudinally extensive spinal cord lesion (LESCL) that mimicked neuromyelitis optica with normal brain imaging at presentation. Investigations showed albuminocytological dissociation which prompted a course of parenteral steroid. However, the lesion relentlessly progressed to involve the brain stem and cerebrum leading to toxoplasmic encephalitis that terminated fatally. This report highlights that toxoplasma can present as LESCL and needs to be considered in the differential diagnosis of atypical myelitis
Vasculitic neuropathy: A retrospective analysis of nerve biopsies and clinical features from a single tertiary care center
Objective: Vasculitic neuropathy can be either restricted to the peripheral nerves or associated with systemic involvement of other organs. The objective of this study was to analyze the nerve biopsies reported as “vasculitic neuropathy” with clinical features. Materials and Methods: All cases diagnosed with vasculitic neuropathy were retrospectively analyzed and categorized as systemic vasculitis and nonsystemic vasculitic neuropathy based on the clinical features. The histological features were further evaluated and classified according to the Peripheral Nerve Society Guidelines. Results: Of the 126 cases, there were 65 nonsystemic vasculitis, 45 secondary systemic vasculitis, and 16 primary systemic vasculitis. Definite vasculitis was more common in the systemic vasculitis group. The epineurial vessels were predominantly involved with chronic axonal changes. Conclusion: The sensitivity of definite vasculitis on nerve biopsy was 54.76%. The sensitivity increases when the diagnostic criteria of definite and probable vasculitis were applied taking into account perivascular inflammation accompanied by vascular changes and axonopathy
A series of biopsy-proven patients with immunoglobulin G4-related neurological disease
Aim: To study the clinical presentation, radiological findings, and therapy responsiveness of patients with biopsy-proven immunoglobulin G4 (IgG4)-related neurological disease. Methods: The study was conducted between January 2016 and March 2018 from the Department of Neurology and Pathology of Nizam's Institute of Medical Sciences. Patients with neurological symptoms and biopsy suggestive of IgG4-related disease (IgG4-RD) were included. These patients were studied for their demographic pattern and clinical presentation. The presence of serological markers such as vasculitic profile and IgG4 levels was analyzed. Radiological findings were studied in detail. Therapeutic agents used and the response to therapy were assessed. Results: There were six cases with IgG4-related neurological disease which were all hypertrophic pachymeningitis. The age ranged from 35 to 64 (mean = 46) years. The clinical presentation was acute in one, subacute in two, and chronic in three patients. The most common presenting symptom was headache (4), followed by gait and/or urinary disturbances (2), paraparesis (1), and diplopia (1). IgG4 levels were elevated in 50% of them. Pseudotumor-like mass and sinovenous thrombosis, not described previously, were seen in one patient. All the patients were treated with oral or intravenous steroid. Rituximab was given in three patients; azathioprine was the steroid-sparing agent in one patient. Those with acute/subacute onset of presentation had an excellent response to steroids. All the patients with a chronic duration of their symptoms received empirical anti-tuberculous therapy before a definitive diagnosis of Ig G4-RD was made. Conclusions: The characterization of patients with IgG4-related neurological disease based on the understanding of the clinical spectrum increases the confidence in the clinician to resort to early immunosuppression, thereby having prognostic implications
Neuromuscular disease genetics in under-represented populations: increasing data diversity
Neuromuscular diseases (NMDs) affect similar to 15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management.We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions.We recruited 6001 participants in the first 43 months. Initial genetic analyses 'solved' or 'possibly solved' similar to 56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a similar to 59% 'solved' and similar to 13% 'possibly solved' outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research.In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally.Wilson et al. present the findings of an international partnership established to study genetic causes of neuromuscular diseases in under-represented diverse populations from 12 low-middle income sites. A genetic cause was identified in similar to 55% of cases and similar to 30% of variants were novel, improving understanding of neuromuscular disease genetics.Functional Genomics of Muscle, Nerve and Brain Disorder