54 research outputs found

    All-magnetic control of skyrmions in nanowires by a spin wave

    Get PDF
    Magnetic skyrmions are topologically protected nanoscale objects, which are promising building blocks for novel magnetic and spintronic devices. Here, we investigate the dynamics of a skyrmion driven by a spin wave in a magnetic nanowire. It is found that (i) the skyrmion is first accelerated and then decelerated exponentially; (ii) it can turn L-corners with both right and left turns; and (iii) it always turns left (right) when the skyrmion number is positive (negative) in the T- and Y-junctions. Our results will be the basis of skyrmionic devices driven by a spin wave.Comment: 10 pages, 7 figure

    Merging droplets in double nano-contact spin torque oscillators

    Get PDF
    We demonstrate how magnetic droplet soliton pairs, nucleated by two separated nano-contact (NC) spin torque oscillators, can merge into a single droplet soliton. A detailed description of the magnetization dynamics of this merger process is obtained by micromagnetic simulations: A droplet pair with a steady-state in-phase spin precession is generated through the spin-transfer torque effect underneath two separate NCs, followed by a gradual expansion of the droplets volume and the out phase of magnetization on the inner side of the two droplets, resulting in the droplets merging into a larger droplet. This merger occurs only when the NC separation is smaller than a critical value. A transient breathing mode is observed before the merged droplet stabilizes into a steady precession state. The precession frequency of the merged droplet is lower than that of the droplet pair, consistent with its larger size. Merged droplets can again break up into droplet pairs at high enough magnetic field with a strong hysteretic response.Comment: accepted by Physical Review

    Network meta-analysis of balloon angioplasty, nondrug metal stent, drug-eluting balloon, and drug-eluting stent for treatment of infrapopliteal artery occlusive disease

    Get PDF
    PURPOSE:We aimed to conduct a network meta-analysis of mixed treatments for the infrapopliteal artery occlusive disease.METHODS:We searched randomized controlled trials (RCTs) regarding balloon angioplasty (BA), nondrug metal stent (NDMS), drug-eluting balloon (DEB), or drug-eluting stent (DES) in PubMed, Embase, CENTRAL, Ovid, Sinomed, and other relevant websites. We selected and assessed the trials that met the inclusion criteria and conducted a network meta-analysis using the ADDIS software.RESULTS:We included 11 relevant trials. We analyzed data of 1322 patients with infrapopliteal artery occlusive disease, of which 351 were in the NDMS vs. DES trials, 231 in the NDMS vs. BA trials, 490 in the BA vs. DEB trials, 50 in the DEB vs. DES trials, and 200 in the BA vs. DES trials. The network meta-analysis indicated that with NDMS as the reference, DES had a better result with respect to restenosis (odds ratio [OR], 5.16; 95% credible interval [CI], 1.58–18.41; probability of the best treatment, 84%) and amputation (OR, 2.50; 95% CI, 0.81–7.11; probability of the best treatment, 61%) and DEB had a better result with respect to target lesion revascularization (TLR; OR, 3.74; 95% CI, 0.78–17.05; probability of the best treatment, 57%). Moreover, with BA as the reference, NDMS had a better result with respect to technical success (OR, 0.10; 95% CI, 0.00–1.15; probability of the best treatment, 86%).CONCLUSION:Our meta-analysis revealed that DES is a better treatment with respect to short-term patency and limb salvage rate, NMDS may provide a better technical success, and DEB and DES are good choices for reducing revascularization

    Drug–disease association prediction with literature based multi-feature fusion

    Get PDF
    Introduction: Exploring the potential efficacy of a drug is a valid approach for drug development with shorter development times and lower costs. Recently, several computational drug repositioning methods have been introduced to learn multi-features for potential association prediction. However, fully leveraging the vast amount of information in the scientific literature to enhance drug-disease association prediction is a great challenge.Methods: We constructed a drug-disease association prediction method called Literature Based Multi-Feature Fusion (LBMFF), which effectively integrated known drugs, diseases, side effects and target associations from public databases as well as literature semantic features. Specifically, a pre-training and fine-tuning BERT model was introduced to extract literature semantic information for similarity assessment. Then, we revealed drug and disease embeddings from the constructed fusion similarity matrix by a graph convolutional network with an attention mechanism.Results: LBMFF achieved superior performance in drug-disease association prediction with an AUC value of 0.8818 and an AUPR value of 0.5916.Discussion: LBMFF achieved relative improvements of 31.67% and 16.09%, respectively, over the second-best results, compared to single feature methods and seven existing state-of-the-art prediction methods on the same test datasets. Meanwhile, case studies have verified that LBMFF can discover new associations to accelerate drug development. The proposed benchmark dataset and source code are available at: https://github.com/kang-hongyu/LBMFF

    Field-free spin-orbit torque switching enabled by interlayer Dzyaloshinskii-Moriya interaction

    Full text link
    Perpendicularly magnetized structures that are switchable using a spin current under field-free conditions can potentially be applied in spin-orbit torque magnetic random-access memory(SOT-MRAM).Several structures have been developed;however,new structures with a simple stack structure and MRAM compatibility are urgently needed.Herein,a typical structure in a perpendicular spin-transfer torque MRAM,the Pt/Co multilayer and its synthetic antiferromagnetic counterpart with perpendicular magnetic anisotropy, was observed to possess an intrinsic interlayer chiral interaction between neighboring magnetic layers,namely the interlayer Dzyaloshinskii-Moriya interaction (DMI) effect. Furthermore, using a current parallel to the eigenvector of the interlayer DMI, we switched the perpendicular magnetization of both structures without a magnetic field, owing to the additional symmetry-breaking introduced by the interlayer DMI. This SOT switching scheme realized in the Pt/Co multilayer and its synthetic antiferromagnet structure may open a new avenue toward practical perpendicular SOT-MRAM and other SOT devices

    Deep learning for dense Z-spectra reconstruction from CEST images at sparse frequency offsets

    Get PDF
    A direct way to reduce scan time for chemical exchange saturation transfer (CEST)-magnetic resonance imaging (MRI) is to reduce the number of CEST images acquired in experiments. In some scenarios, a sufficient number of CEST images acquired in experiments was needed to estimate parameters for quantitative analysis, and this prolonged the scan time. For that, we aim to develop a general deep-learning framework to reconstruct dense CEST Z-spectra from experimentally acquired images at sparse frequency offsets so as to reduce the number of experimentally acquired CEST images and achieve scan time reduction. The main innovation works are outlined as follows: (1) a general sequence-to-sequence (seq2seq) framework is proposed to reconstruct dense CEST Z-spectra from experimentally acquired images at sparse frequency offsets; (2) we create a training set from wide-ranging simulated Z-spectra instead of experimentally acquired CEST data, overcoming the limitation of the time and labor consumption in manual annotation; (3) a new seq2seq network that is capable of utilizing information from both short-range and long-range is developed to improve reconstruction ability. One of our intentions is to establish a simple and efficient framework, i.e., traditional seq2seq can solve the reconstruction task and obtain satisfactory results. In addition, we propose a new seq2seq network that includes the short- and long-range ability to boost dense CEST Z-spectra reconstruction. The experimental results demonstrate that the considered seq2seq models can accurately reconstruct dense CEST images from experimentally acquired images at 11 frequency offsets so as to reduce the scan time by at least 2/3, and our new seq2seq network contributes to competitive advantage

    An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes

    Get PDF
    In this paper, the biosynthesis process of phenolic compounds in plants is summarized, which includes the shikimate, pentose phosphate and phenylpropanoid pathways. Plant phenolic compounds can act as antioxidants, structural polymers (lignin), attractants (flavonoids and carotenoids), UV screens (flavonoids), signal compounds (salicylic acid and flavonoids) and defense response chemicals (tannins and phytoalexins). From a human physiological standpoint, phenolic compounds are vital in defense responses, such as anti-aging, anti-inflammatory, antioxidant and anti-proliferative activities. Therefore, it is beneficial to eat such plant foods that have a high antioxidant compound content, which will cut down the incidence of certain chronic diseases, for instance diabetes, cancers and cardiovascular diseases, through the management of oxidative stress. Furthermore, berries and other fruits with low-amylase and high-glucosidase inhibitory activities could be regarded as candidate food items in the control of the early stages of hyperglycemia associated with type 2 diabetes

    The Main Progress of Perovskite Solar Cells in 2020–2021

    Get PDF
    Perovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided

    Merging magnetic droplets by a magnetic field pulse

    No full text
    Reliable manipulation of magnetic droplets is of immense importance for their applications in spin torque oscillators. Using micromagnetic simulations, we find that the antiphase precession state, which originates in the dynamic dipolar interaction effect, is a favorable stable state for two magnetic droplets nucleated at two identical nano-contacts. A magnetic field pulse can be used to destroy their stability and merge them into a big droplet. The merging process strongly depends on the pulse width as well as the pulse strength

    Selection and Characterization of Packaged FBG Sensors for Offshore Applications

    No full text
    With the development in the exploitation of maritime resources, the structural health monitoring (SHM) of offshore structures becomes necessary. This study focuses on addressing the practical issues of application of fiber Bragg grating (FBG) sensors for the SHM of offshore structures, in particular an FPSO (floating, production, storage, and offloading unit) vessel. Due to the harsh marine environment and tough working conditions, the FBG sensors must have sufficient protection and good repeatability for long-term monitoring. Thorough research has been conducted to identify the most suitable, commercially available protection packaging for FBG sensors for offshore applications. Further, the performance of the selected FBG sensor packaging is tested under conditions of strong sunlight, heavy rain, and salty water in order to emulate the marine environment. Moreover, the installation method of the packaged FBG sensors is equally important, as it ensures the repeatability and durability of the sensors for their long-term performance. It is shown that the packaged FBG sensors can be installed using resin-based epoxy to maintain the repeatability of the sensor over the long-term. Further, the packaged FBG sensors are installed and tested on a simple FPSO model. The experimental results under full load and ballast draft conditions show that the proposed FBG sensors are competent for the SHM of offshore structures
    • …
    corecore