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Abstract 

 

Magnetic skyrmions are topologically protected nanoscale objects, which are promising 

building blocks for novel magnetic and spintronic devices. Here, we investigate the dynamics of a 

skyrmion driven by spin wave in magnetic nanowire. It is found that (i) the skyrmion is first 

accelerated and then decelerated exponentially, (ii) it can turn L-corners with both right and left turns, 

(iii) it always turns left (right) when the skyrmion number is positive (negative) in the T- and 

Y-junctions. Our results will be a basis of skyrmionic devices driven by spin wave. 
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1. Introduction 

The concept of topology has sparked wide interest in recent years. A well-known example is the quantum spin Hall 

edge state of the topological insulator [1-3], which is protected by the time-reversal symmetry and therefore has attracted 

tremendous interests in condensed matter physics. A popular example in topology is that both a coffee mug and a donut 

can continuously transform into a torus, indicating the same nature of topology for the donut and coffee mug. On the 

contrary, a coffee mug (or donut) cannot morph into a sphere without introducing rupture, meaning they are of different 

topology. A significant amount of energy is required in order to transform a certain object into another with different 

topology, which could be described as “topological stability” or “topological protection”. Topological considerations are 

of considerable use in describing and understanding the extraordinary stability of such system. The concept of topology 

is also of crucial importance in studying liquid crystals, vortex in superconductors, and superfluids etc. in condensed 

matter systems [4]. 

The concept of skyrmion was firstly proposed by Tony Skyrme to describe the interactions of pions in the context of 

nuclear physics [5-8]. Later it is generalized to various subjects in condensed matter physics including quantum Hall 

magnets, Bose-Einstein condensate etc. [9]. A skyrmion is a topological particle-like excitation in classical continuum 

field theory which is robust as long as the field is continuous and the edge effect is negligible. In magnetic materials, a 

wide range of magnetic configurations are being researched intensively in the form of domain walls, vortices, monopoles, 

and magnetic skyrmions in recent years due to the same topological concern [4]. In analogy to the well-known example 

of donut-balloon transformation, a magnetic skyrmion cannot be continuously transformed into other magnetic 

configurations such as ferromagnetic state, without surpassing the topological energy barrier. Therefore, magnetic 

skyrmion is topologically protected and relatively more stable than other types of magnetic configurations such as vortex 

and bubble, making it very promising for realistic applications in information processing and ultra-high density 

information storage [9, 10]. Recent experimental realizations of skyrmions in magnet have attracted great interest [9-21]. 

Most of the experimental observations of skyrmions are reported in non-centrosymmetric ferromagnets such as MnSi, 

FeGe and Fe0.5Co0.5Si etc. [10-19, 21], i.e., the B20-type materials. More recently, isolated skyrmion was also 

successfully realized in thin films of similar materials lacking inverse symmetry or in proximity of heavy metal substrate 

inducing sizable DMI [22-24]. A skyrmion can be created by circulating current [25], from notch [26], from 

photo-irradiation [27, 28], or from a domain-wall pair [29]. Skyrmion is expected to be a key player of the 

next-generation electronics – skyrmionics [9, 10]. Skyrmion can be driven by spin-polarized current [30-34]. However, 

to move the skyrmion along the central line of a nanotrack by in-plane spin-polarized current requires severe matching 

between the damping coefficient and the non-adiabatic coefficient, i.e. α is close to β, limiting possible material systems 

for skyrmion applications [9, 26, 29, 32]. Another possibility of controlling a skyrmion is to use spin wave [34, 35]. Spin 

wave produces less heat than electric current, which therefore is promising for practical applications [36-39]. We 

investigate the conditions permitting one to use spin waves, instead of electrical currents, to control skyrmions in 

nano-circuits. So far there is no report on the skyrmion dynamics driven by spin wave in constricted geometries such as 

nanotrack and junction. In a real skyrmionic device, skyrmions will travel in circuits consisting of narrow nanotracks. 

Thus the study of the skyrmion dynamics in such configurations is crucial for realization of skyrmionics. 

In this paper, we investigate the skyrmion dynamics driven by spin wave in constricted geometries with the 

Dzyaloshinskii-Moriya interaction (DMI) such as nanotracks, L-corners, T- and Y-junctions, which are the basic 

ingredients of circuits based on skyrmions. Our major findings are as follows: 1) A skyrmion can travel quite a long 

distance without touching sample edges and without requiring fine-tuning of sample parameters. 2) We show that a 

skyrmion can turn a shaped corner without touching the sample edges even in the case of the L-corner. 3) A skyrmion 

always turns left (right) at the T- or Y-junctions when the topological number is positive (negative). 4) The turning 

direction of the skyrmion at the junction can be controlled by using multiple spin wave injection sources. 5) The 

skyrmion velocity can be well explained by a fitting function which embodies its initial acceleration and subsequent 

exponential decay. 

 

2. Methods 

2.1. Simulation details 

The micromagnetic simulations are performed using the Object Oriented MicroMagnetic Framework (OOMMF) [40] 

including the DMI module [41-43]. The time-dependent magnetization dynamics is governed by the 
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Landau-Lifshitz-Gilbert (LLG) equation [44-47] 

𝑑𝐌

𝑑𝑡
= −|𝛾|𝐌 × 𝐇eff +

𝛼

𝑀𝑆
(𝐌 ×

𝑑𝐌

𝑑𝑡
),                                  (1) 

where M is the magnetization, Heff is the effective field, γ is the Gilbert gyromagnetic ratio, and α is the damping 

coefficient. The effective field is defined as follows: 

𝐇eff = −𝜇0
−1 𝜕𝐸

𝜕𝐌
.                                         (2) 

The average energy density E is a function of M specified by [32, 44, 48],   

𝐸 = 𝐴 [∇ (
𝐌

𝑀𝑆
)]
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𝜕𝑦
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𝜕𝑀𝑧

𝜕𝑦
),     (3) 

where A and K are the exchange and anisotropy energy constants, respectively. H and Hd(M) are the applied and 

magnetostatic self-interaction fields while MS = |M(r)| is the spontaneous magnetization. D is the DMI constant and Mx, 

My, Mz are the components of the magnetization M. The five terms at the right side of Eq. (3) correspond to the exchange 

energy, the anisotropy energy, the applied field (Zeeman) energy, the magnetostatic (demagnetization) energy and the 

DMI energy, respectively. 

For micromagnetic simulations, we consider 1-nm-thick cobalt nanotracks on the substrate with low damping [33, 

49, 50]. The intrinsic magnetic parameters are similar to Ref. [32]: Gilbert damping coefficient α = 0.01 ~ 0.05 and the 

value for γ is -2.211×105 m A-1 s-1. Saturation magnetization MS = 580 kA m-1, exchange stiffness A = 15 pJ m-1, DMI 

constant D = 4 mJ m-2 and perpendicular magnetic anisotropy (PMA) K = 0.8 MJ m-3 unless otherwise specified. Thus, 

the exchange length is lex = √
𝐴

𝐾
 = 4.3 nm. The simulated models are discretized into 2 × 2 × 1 nm3 cells except the 

Y-junctions, which are discretized into 1 × 1 × 1 nm3 cells in order to maintain the numerical accuracy. 

In the simulation of SW-driven skyrmion in the nanotrack, the width (along y) of the nanotrack is 40 nm and the 

length (along x) is 800 ~ 1500 nm. The width of the pulse element equals to the width of the nanotrack and the length is 

fixed to be 15 nm. In the simulation of SW-driven skyrmion in the T- and Y-junction, the width of the nanotrack is 

increased to 60 nm and D is decreased to 3.5 mJ m-2, which broadens the channel and reduces the size of the skyrmion, 

leading to a better effect of the skyrmion turning at the junction. 

The virgin state of the magnetization of the nanotrack is relaxed along +z direction, except for the tilted 

magnetization near the edges due to the DMI. At first, a skyrmion is created at designated spot (as shown in Fig. 1) by 

the vertical spin-polarized current injection [32] and relaxed to stable/metastable state within a short period of time. We 

also implement absorbing boundary conditions (ABCs) based on an exponential increase of the damping coefficient at 

the ends of the nanotrack to eliminate any abrupt changes in damping and effectively suppress any spurious spin wave 

reflections [51]. 

 

 
Figure 1. Schematics of the micromagnetically modeled system. (a) The magnetic nanotrack. (b) The L-corner. (c) The 
T-junction. (d) The Y-junction with angle of 120°. The patterned green boxes denote the pulse elements, i.e., the microwave 
antenna placed upon the nanotrack, from where the spin wave is injected via the applied magnetic pulse applied along the 
lateral axis of the nanotrack. 

 

3. Results and discussion 

3.1. A skyrmion on nanotrack 

We first demonstrate the spin wave driven motion of the skyrmion on an 800-nm-long and 40-nm-wide nanotrack with 
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the spin wave (SW) injection. 

For the SW injection as shown in Fig. 1(a), a skyrmion is located at x = 200 nm at t = 0 ns. A magnetic field pulse is 

applied by the pulse element on the left side of the track (135 nm < x < 150 nm), which can be realized by employing a 

microwave antenna placed upon the nanotrack [31, 52, 53]. The profile of the square magnetic field pulse is shown in the 

inset of Fig. 3. The amplitude of the field is 600 mT and both the pulse width and spacing are 0.02 ns, i.e., the frequency 

is 25 GHz. The magnetic field pulse is applied perpendicularly to the track (see Supplementary Note 1 for the parallel 

case). The excited SW propagates toward the ends of the nanotrack and drives the skyrmion into motion at the same time. 

Figure 2(a) shows the propagation of the skyrmion driven by SW in the 40-nm-wide nanotrack with the damping 

coefficient of 0.01. At t = 5 ns, the skyrmion moves 266 nm along the nanotrack with an average speed of 53 m s-1. At t = 

9 ns, it moves 457 nm along the nanotrack with an average speed of 51 m s-1 (see Supplementary Movie 1 and 

Supplementary Note 2). However, when the damping coefficient of the nanotrack increases to 0.02, the skyrmion moves 

180 nm along the nanotrack with an average speed of 20 m s-1 at t = 9 ns. When the damping coefficient further increases 

to 0.05, the skyrmion only moves 49 nm along the nanotrack with an average speed of 5 m s-1 at t = 9 ns, as shown in Fig. 

2(b) and 2(c). Hence, it can be seen that the mobility of the skyrmion on the nanotrack reduces significantly with 

increasing damping coefficient of the system under the same condition of SW injection, since the excited spin wave 

decays quickly as its amplitude decreases with the damping coefficient α. For this reason, in order to show a better 

performance of SW-driven skyrmion, the damping coefficient in all simulations is fixed at 0.01 in the remaining of this 

paper. However, for large damping constant results, please refer to the Supplementary Information Note 3. 

 

 
Figure 2. The propagation of a skyrmion driven by the spin wave in the 40-nm-wide nanotrack. The patterned green boxes 
on the track corresponds to the region of the spin wave injection (135 nm < x < 150 nm). (a) Snapshots of the propagation 
of the skyrmion on the nanotrack with the damping coefficient of 0.01 (also see Supplementary Figure 3 for cross-sectional 
views). (b) Snapshots of the propagation of the skyrmion on the nanotracks with larger damping coefficients of 0.02 and 
0.05. The color scale presents the out-of-plane component of the magnetization mz, which has been used throughout this 
paper. 

 

Figure 3 shows the skyrmion’s velocity as a function of time in 800-nm-long and 1500-nm-long nanotracks. 

Obviously, on the 800-nm-long nanotrack, the skyrmion’s velocity is not uniform and experiences acceleration and 

deceleration. The skyrmion reaches the end of the nanotrack at t ~ 13.5 ns. The skyrmion slows down due to the 

skyrmion-edge repulsion and finally it stops at a position balanced by the skyrmion-edge repulsive force and the SW 

driving force. During the first 9 ns, the maximal velocity is ~ 67 m s-1, and the average velocity is ~ 51 m s-1. In the 

1500-nm-long nanotrack, the skyrmion are far away from both the end of the nanotrack and the source of the SW at t = 

20 ns, resulting in the exponential decrease of its velocity. It should be mentioned that we also investigated the case 

where the magnetic field pulse is parallel to the track instead of perpendicular to it, which shows similar results (see 

Supplementary Note 1). 

Figure 4 shows the skyrmion’s velocity as a function of time by varying different parameters with the magnetic field 

pulse as shown in the inset of Fig. 3. A larger average and maximal speed can be achieved for the skyrmion in the 

nanotrack with larger DMI strength D, smaller perpendicular magnetic anisotropy K and smaller exchange stiffness A. 

For the nanotrack with larger D and smaller K, the equilibrium size of the skyrmion is larger, leading to a larger surface 

of the skyrmion to interact with the SW, which results in larger driving force. For larger K, the spins are harder to flip 

and the SW decays faster, resulting in a smaller velocity of the skyrmion. For smaller A, the spins around the skyrmion 

are easier to be reversed, leading to a larger velocity. As shown in Fig. 4(d), the average/maximal skyrmion velocity 
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increases by decreasing MS from 620 kA m-1 to 580 kA m-1. However, when MS reduces below 560 kA m-1, the 

average/maximal skyrmion velocity dramatically decreases. Form Fig. 4(e) and Fig. 4(f), it can be seen that the larger 

amplitude and/or higher frequency of the magnetic pulse lead to a larger average/maximal speed of the skyrmion. 

 

 
Figure 3. The velocity of a skyrmion as functions of time in 800-nm-long and 1500-nm-long nanotracks with same spin 
wave injection. The inset denotes the profile of the square magnetic field pulse applied along the lateral axis of the 
nanotrack. The red dot curve denotes the fitting function of the velocity versus time. 

 

 
Figure 4. The velocity of a skyrmion as a function of different parameters. (a) Effect of the DMI D, (b) effect of the 
perpendicular magnetic anisotropy K, (c) effect of the exchange stiffness A, (d) effect of the saturation magnetization MS, 

(e) effect of the amplitude of the magnetic pulse and (f) effect of the frequency of the pulse. The damping coefficient is fixed 
at 0.01. 

 

It should be noted that if D is larger than a certain threshold (4.25 mJ m-2 in case of Fig. 4(a)), K is smaller than a 

certain threshold (0.7 MJ m-3 in case of Fig. 4(b)) and/or A is smaller than a certain threshold (13 pJ m-1 in case of Fig. 

4(c)), the skyrmion is easy to be destroyed and the system favors multiple domain walls (see Supplementary Movie 2). 

At the same time, if the amplitude or frequency is larger than a certain threshold, the skyrmion and/or the background 

magnetization of the nanotrack will be destroyed by the strong magnetic field pulse as well as the SW generated by the 

pulse (see Supplementary Movie 3). 

In addition, we have also studied the effect of the magnetic field pulse directly on the skyrmion, i.e., applied on the 

whole nanotrack (see Supplementary Note 4). It is found that the magnetic field pulse applied on the whole nanotrack 

will not drive the skyrmion into motion but may induce the breathing of the skyrmion. On the other hand, we have also 

investigated the motion of skyrmion driven by spin waves generated via oscillating Oersted field (see Supplementary 

Note 5), where the spatiotemporal dependent Oersted field acts on the whole sample but mainly focuses on the spin wave 
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injection region, and it is found the results remain qualitatively the same with that driven by spin waves generated via 

pulse element. 

 

 
Figure 5. Snapshots of the SW-driven motion of a skyrmion (Q = 1) at the L-corner. The magnetic field pulse is applied 
along the lateral axis in the patterned green region with the profile shown in the inset of Fig. 3 (hereinafter the same). The 
yellow arrow denotes the motion of the skyrmion (hereinafter the same). (a) The skyrmion is destroyed by the corner due to 
the tilts of magnetization at the corner edge. Hence, we cut the 90-degree corner into two 135-degree corners, and the 
skyrmion smoothly turns left at the L-corner in (b) and turns right in (c). 

 

 
Figure 6. Snapshots of the SW-driven motion of a skyrmion (Q = 1) in the T-junction and Y-junction. (a) the skyrmion turns 

left from the C-branch into the L-branch of the T-junction. (b) the skyrmion goes straight from the L-branch to the R-branch 
of the T-junction. (c) the skyrmion turns left from the R-branch into the C-branch of the T-junction. (d) the skyrmion turns left 
from the C-branch into the L-branch of the Y-junction, similar to (a). 

 

3.2. A skyrmion on L-corners, T- and Y-junctions 

For the application of skyrmionic logic circuit, we also study the skyrmion driven by SW in constricted geometries such 

as L-corners, T- and Y- junctions, as shown in Fig. 1(b), 1(c) and 1(d). As shown in Fig. 5(a), the skyrmion driven by 

SW in a L-corner is destroyed when it turns left and touches the edge at the corner (see Supplementary Movie 4). We 

therefore cut the 90-degree corner into two 135-degree corners, as shown in Fig. 5(b) and 5(c). In this configuration, the 

skyrmion smoothly turns left without touching the edge of the L-corner in Fig. 5(b) (see Supplementary Movie 5). The 
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spin wave can also move a skyrmion into the right direction at the L-corner as shown in Fig. 5(c) (see Supplementary 

Movie 6). 

Figure 6 shows the SW-driven motion of the skyrmion in the T-junction and Y-junction. For the case of T-junction, 

we choose a skyrmion with positive topological number [29, 54]. The skyrmion always turns left, i.e., from the central 

branch (C-branch) to the left branch (L-branch) as shown in Fig. 6(a) (see Supplementary Movie 7), from the L-branch to 

the right branch (R-branch) as shown in Fig. 6(b) (see Supplementary Movie 8), and from the R-branch to the C-branch 

as shown in Fig. 6(c) (see Supplementary Movie 9). Similarly, for the case of Y-junction, the skyrmion always turns left, 

as shown in Fig. 6(d) (see Supplementary Movie 10 and Supplementary Note 2). By contrast, the skyrmion always turn 

right if the topological number of the skyrmion is negative. 

Although the SW-driven skyrmion with positive topological number on the T-junction or Y-junction has an intrinsic 

favor of turning left at the junction as shown in Fig. 6, it is also possible to control the turning direction of the skyrmion 

based on a series of SW-injection pulse elements, MTJ magnetization detectors as well as built-in circuits [32, 33, 

55-57]. 

 

 
Figure 7. Control of the turning direction of the SW-driven skyrmion (Q = 1) at the T-junction. (a) The skyrmion naturally 

turns left from the C-branch into the L-branch of the T-junction. (b) The skyrmion turns right from the C-branch into the 

R-branch of the T-junction with the help of two magnetic pulse elements. Similar method could be applied to control the 

turning direction of the skyrmion in the Y-junction. 

 

Figure 7 shows the control of the turning direction of the SW-driven skyrmion in the T-junction. As shown in Fig. 

7(a), the SW-driven skyrmion with positive topological number will turn left from the C-branch into the L-branch (see 

Supplementary Movie 11). When the skyrmion is just out of the C-branch (t = 2.4 ns) as shown in Fig. 7(b), we apply 

two magnetic field pulses (700 mT, 25 GHz) near the exits of the C-branch and the L-branch and simultaneously switch 

off the pulse source (600 mT, 25 GHz) at the end of the C-branch. In this case, the skyrmion will be pushed into the 

R-branch by the SWs (t = 6 ns) (see Supplementary Movie 12). 
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It should be noted that all these results are valid when the direction of the magnetic pulse changes from being 

perpendicular to the nanotrack to being parallel to the nanotrack (see Supplementary Movies 14 – 22 and Supplementary 

Note 1). 

On the other hand, it is worth mentioning that, due to the nonreciprocity of SW [58, 59], the SW-driven motion of 

the skyrmion is nonreciprocal as well. A skyrmion driven by SW from the same magnetic field pulse is different in 

motion depending on whether it is placed on the left or the right side of the field source in the nanotrack (see 

Supplementary Movie 13). 

 

3.3. Thiele equation analysis 

We have investigated the SW-driven skyrmion dynamics in constricted geometries including the nanotracks, L-corners, 

T- and Y- junctions. A skyrmion can travel in such geometries without touching the edges. It has an intrinsic tendency to 

turn left or right depending on the sign of the skyrmion number. By applying multiple spin wave injections, we can 

control the dynamics of a skyrmion. Our results will be a basis of skyrmion devices in which a sequence of skyrmions 

move in nano-circuits driven by spin wave. 

A skyrmion is at rest initially. Once the spin wave arrives at the skyrmion, it starts the accelerated motion 𝐯(𝑠) = 𝑎𝑡 

where  corresponds to the acceleration of the skyrmion. After long enough time, the velocity of skyrmion becomes 

the same as that of SW 𝐯(𝑠)(𝑡) = 𝐯(𝑑)(𝑡). The velocity of a skyrmion also decays exponentially 𝐯(𝑠)(𝑡) ∝ 𝑒−𝑏𝑡 since 

SW decays exponentially 𝐯(𝑑)(𝑥) = 𝑐𝑒−𝑑𝑥. Accordingly we obtain the fitting function 𝐯(𝑠)(𝑡) = 𝑎𝑡𝑒−𝑏𝑡, as shown in 

Fig. 3. The fitting parameters are showed in Table I. We find that 𝑎 ∝ 𝑐 and 𝑏 ∝ 𝑑. The former relation implies that the 

initial acceleration is proportional to the amplitude of SW, while the latter relation implies the exponential decay of the 

velocity of a skyrmion due to the SW decay. 

The acceleration a is proportional to both the magnitude of the spin wave c and the radius of the skyrmion (See 

Supplementary Note 6), 

𝑅Sk =
𝐷𝜋2

8

𝜋
𝜇0𝐻+2𝐾𝜋

.                                        (4) 

The skyrmion radius becomes larger with increasing D and decreasing K. This is in good agreement with Table I, where 

a increases with increasing D and decreasing K. We also find that a is proportional to the amplitude and the frequency of 

the spin wave. This is because spin wave has large energy for large amplitude and large frequency and the skyrmion 

radius does not change by changing the amplitude and frequency of spin wave. 

For larger K, the spins are harder to flip, the SW propagates shorter and decays faster, resulting in a smaller speed of 

the skyrmion. Namely, b increases with increasing K. On the other hand, it can be seen that b is not sensitive to the other 

parameters in Table. I within the margin of error. 

This intrinsic tendency to turn left (right) of a skyrmion with Q = 1 (Q = -1) can be understood by the Thiele 

equation [60-62] 

𝐆 × (𝐯(𝑠) − 𝐯(𝑑)) − 𝒟𝛼𝐯(𝑑) − 𝐅(𝐱) = 0,                             (5)
 

which yields 

−𝐺(𝐯𝑦
(𝑠)

− 𝐯𝑦
(𝑑)

) − 𝒟𝛼𝐯𝑥
(𝑑)

= 𝐹𝑥(𝐱), 𝐯𝑥
(𝑠)

− 𝐯𝑥
(𝑑)

− 𝒟𝛼𝐯𝑦
(𝑑)

= 𝐹𝑦(𝐱).                  (6) 

They are explicitly solved as 

𝐯𝑥
(𝑑)

=
1

𝐺2+𝒟2𝛼2 [𝐺2𝐯𝑥
(𝑠)

− 𝐺𝒟𝛼𝐯𝑦
(𝑠)

− 𝒟𝛼𝐹𝑥(𝐱) − 𝐺𝐹𝑦(𝐱)],                      (7) 

𝐯𝑦
(𝑑)

=
1

𝐺2+𝒟2𝛼2 [𝐺2𝐯𝑦
(𝑠)

+ 𝐺𝒟𝛼𝐯𝑥
(𝑠)

− 𝒟𝛼𝐹𝑦(𝐱) + 𝐺𝐹𝑥(𝐱)],                      (8) 

and summarized into 

𝐯(𝑑) =
1

1+𝒟2𝛼2/𝐺2 𝐯(𝑠) +
𝒟𝛼

𝐺2+𝒟2𝛼2 𝐆 × 𝐯(𝑠) −
𝒟𝛼

𝐺2+𝒟2𝛼2 𝐅(𝐱) +
1

𝐺2+𝒟2𝛼2 (𝐆 × 𝐅(𝐱)).            (9) 

The first term is dominant since |G| ≫ |𝒟𝛼|. In this limit, a skyrmion moves at the same velocity as the SW i.e. 𝐯(𝑑) =

𝐯(𝑠). However, for the higher order, the Hall effect of a skyrmion emerges. We set 𝐯𝑥
(𝑠)

≠ 0, 𝐯𝑦
(𝑠)

= 0, and 𝑉 = 0, and 

get 

𝐯𝑥
(𝑑)

=
1

1+𝒟2𝛼2/𝐺2 𝐯𝑥
(𝑠)

, 𝐯𝑦
(𝑑)

=
−𝐺𝒟𝛼

𝐺2+𝒟2𝛼2 𝐯𝑥
(𝑠)

.                            (10) 

The Hall angle is proportional to α. The third term −
𝒟𝛼

𝐺2+𝒟2𝛼2 𝐅(𝐱) in Eq. (9) represents a confining potential, while the 

a
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forth term 
1

𝐺2+𝒟2𝛼2 (𝐆 × 𝐅(𝐱)) represents the motion of a skyrmion when it approaches an edge. This equation shows 

that a skyrmion detours the confining potential V(x). The direction of the detour depends on the Pontryagin number since 

the forth term is proportional to G. Along the edge ∇𝑉(𝐱) is very large. Hence, the third and fourth terms are dominant 

over the first and the second terms. The skyrmion cannot touch the edge when ∇𝑉(𝐱) is strong enough, while it touches 

the edge if ∇𝑉(𝐱) is not so strong. A skyrmion detour the edge due to the fourth term. 

Let us consider the case where the edge exists at x = 0, toward which a skyrmion is moving along the y axis from the 

x < 0 side. We have 𝜕𝑥𝑉(𝐱) > 0 and 𝜕𝑦𝑉(𝐱) = 0. Then, a skyrmion turns left for G = 1 since 𝐯(𝑑) > 0, while a 

skyrmion turns right for G = −1 since 𝐯(𝑑) < 0. 

 

TABLE I. Constants of the fitting functions of the velocity curves showed in Fig. 4. 

 

D (mJ m-2) 3.25 3.50 3.75 4.00 

a 21.7807 36.4434 46.7089 53.0071 

b 0.1973 0.2578 0.2827 0.2885 

     

K (MJ m-3) 0.800 0.825 0.850 0.900 

a 53.0071 51.3847 37.3514 31.0713 

b 0.2885 0.3215 0.3231 0.3267 

     

A (pJ m-1) 14 15 16 17 

a 58.4507 53.0071 48.7456 40.7391 

b 0.2951 0.2885 0.2908 0.2948 

     

MS (kA m-1) 560 580 600 620 

a 41.3331 53.0071 42.9825 35.3391 

b 0.3161 0.2885 0.2659 0.2603 

     

Amplitude (mT) 450 500 550 600 

a 31.0865 37.6614 46.6487 53.0071 

b 0.2939 0.2931 0.2974 0.2885 

     

Frequency (GHz) 3.125 6.25 12.5 25 

a 6.9819 16.1533 27.8073 53.0071 

b 0.2385 0.2573 0.2889 0.2885 

 

4. Conclusion 

In conclusion, we have presented micromagnetic simulations and analysis that demonstrate the feasibility of spin 

wave-driven skyrmions in constricted geometries with the Dzyaloshinskii-Moriya interaction such as nanotracks, 

L-corners, T- and Y-junctions. We have found a skyrmion can turn a sharp corner without touching edges even in the 

case of the L-corner. A skyrmion always turns left (right) at the T- or Y-junctions when the topological number is 

positive (negative). Our results will pave a way to future applications to skyrmionics driven by spin wave in constricted 

geometries. 
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