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A direct way to reduce scan time for chemical exchange saturation transfer 
(CEST)-magnetic resonance imaging (MRI) is to reduce the number of CEST 
images acquired in experiments. In some scenarios, a sufficient number of 
CEST images acquired in experiments was needed to estimate parameters 
for quantitative analysis, and this prolonged the scan time. For that, we aim 
to develop a general deep-learning framework to reconstruct dense CEST 
Z-spectra from experimentally acquired images at sparse frequency offsets 
so as to reduce the number of experimentally acquired CEST images and 
achieve scan time reduction. The main innovation works are outlined 
as follows: (1) a general sequence-to-sequence (seq2seq) framework 
is proposed to reconstruct dense CEST Z-spectra from experimentally 
acquired images at sparse frequency offsets; (2) we  create a training set 
from wide-ranging simulated Z-spectra instead of experimentally acquired 
CEST data, overcoming the limitation of the time and labor consumption in 
manual annotation; (3) a new seq2seq network that is capable of utilizing 
information from both short-range and long-range is developed to improve 
reconstruction ability. One of our intentions is to establish a simple and 
efficient framework, i.e., traditional seq2seq can solve the reconstruction 
task and obtain satisfactory results. In addition, we propose a new seq2seq 
network that includes the short- and long-range ability to boost dense CEST 
Z-spectra reconstruction. The experimental results demonstrate that the 
considered seq2seq models can accurately reconstruct dense CEST images 
from experimentally acquired images at 11 frequency offsets so as to reduce 
the scan time by at least 2/3, and our new seq2seq network contributes to 
competitive advantage.
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1 Introduction

Chemical exchange saturation transfer (CEST)-magnetic 
resonance imaging (MRI) provides a powerful tool to indirectly detect 
diluted molecules by capturing their saturation transfer to the 
abundant water pool (Zhou et al., 2003; Cai et al., 2012; Kim et al., 
2015; Sun et al., 2016; Zaiss et al., 2018; Li et al., 2020; Cember et al., 
2023; Longo et  al., 2023). In practice, a sufficient number of 
two-dimensional (2D) CEST images should be  acquired at dense 
frequency offsets to estimate parameters for quantitative analysis. This 
comes with the resource-consuming measurement (Zaiss et al., 2018; 
Li et al., 2020), potentially compromising the viability of the biological 
sample and imparting high sensitivity to motion artifacts. In some 
scenarios, the long times of sufficiently sampled CEST images covering 
the expected offset range limit the CEST-MRI to single-slice 
acquisitions that may not fully interrogate the spatial heterogeneity of 
tumors (Randtke et al., 2017) or other organs (Longo et al., 2011), thus 
limiting the functional information that can be provided (Villano 
et al., 2021). Therefore, CEST-MRI with a significantly shorter scan 
time can contribute to a more widespread use. Toward this end, 
reconstructing dense CEST Z-spectra from 2D acquisitions under a 
small number of scans can provide a better context to capture and 
understand biomolecular processes and dynamic patterns accurately.

A way to reduce scan time would be to shorten echo readout. Recent 
improvements in rapid acquisition focus on echo readout: turbo spin 
echo (Zhou et  al., 2008), gradient and spin echo (Zhu et  al., 2010), 
segmented echo planar imaging approaches (Jones et al., 2012), and 
gradient echo-based techniques (Khlebnikov et  al., 2017; 
Krishnamoorthy et al., 2017). However, the highly segmented acquisition 
performed on these approaches often leads to increased blurring 
(Khlebnikov et al., 2017); in particular, the prior information of the 
optimized measurement parameters and the chosen data limits their 
extensive applications (Zaiss et al., 2018). Therefore, the development of 
computational methods that improve the reconstruction quality of dense 
CEST images from experimentally acquired images at sparse frequency 
offsets has the potential to be transformative and can push the capabilities 
of some imaging-limited CEST-MRI modalities.

Deep learning tools have been used for complicated intelligence 
for several years and have transformed the analysis and interpretation 
of complex input data (Alzubaidi et al., 2021; Dong et al., 2021). This 
has led to several breakthroughs for applications in the field of speech 
recognition, computer vision, and other applications, allowing 
researchers to intelligently learn different knowledge and carry out 
previously unachievable experiments. In particular, deep learning has 
been used successfully to analyze CEST MRI (Perlman et al., 2022; 
Cohen and Otazo, 2023; Hunger et al., 2023; Mohammed Ali et al., 
2023; Wu et al., 2023). Perlman et al. (2022) proposed a rapid detection 
method for the early apoptotic responses to oncolytic virotherapy 
using CEST magnetic resonance fingerprinting and deep learning. To 
predict multi-pool Lorentzian parameters of CEST-MRI at 7 T, Hunger 
et al. (2023) developed a deepCEST approach by inputting uncorrected 
Z-spectra of a single B1 level and a B1 map, thereby achieving an 
uncertainty quantification in addition to the Lorentzian amplitudes. 
To enhance the super-resolution performance of CEST-MRI, Wu et al. 
(2023) developed a Cross-space Optimization-based Mutual learning 
network by incorporating novel spatio-frequency extraction modules 
and a mutual learning module.

To that end, this study aims to establish a sequence-to-sequence 
(seq2seq) framework to reconstruct dense CEST Z-spectra from 

experimentally acquired images at sparse frequency offsets. The main 
benefit of our seq2seq framework is that it is both simple and efficient 
when we  apply it to tackle the problem of dense Z-spectra 
reconstruction. Another task of this study is to boost dense Z-spectra 
reconstruction. In fact, CEST Z-spectra behave like the short- and 
long-term memory when an MRI scan is performed over the offset 
frequency range. Surprisingly, the temporal convolutional network 
(TCN) (Bai et al., 2018) that enhances the capacity of mining higher-
level spatial features from historical data and the long short-term 
memory (LSTM) network (Sherstinsky, 2020) that better remembers 
the connections in the short time scale of the data can achieve the 
purpose of learning complex interactions more effectively for the 
input sequence. Therefore, this paper formulates a TCN-LSTM 
network to improve reconstruction ability.

2 Materials and methods

2.1 In vivo MRI experiments

The in vivo CEST-MRI was performed on a 7.0 T horizontal bore 
small animal MRI scanner (Agilent Technologies, Santa Clara, CA, 
United States), with a surface coil (Time Medical Technologies, China) 
for transmission and reception. For this assessment, 8-week-old male 
SD rats (Beijing Vital River Laboratory Animal Technology Co., Ltd.) 
weighing 250 g were used to generate animal models. All animal care 
and experimental procedures were in accordance with the National 
Research Council’s Guide for the Care and Use of Laboratory Animals.

In the experimental study, the rat was anesthetized with isoflurane 
mixed with O2 at the rate of 1 L/min; for anesthesia induction, 4.0% 
isoflurane was used and 2.0%–3.0% isoflurane was used for 
maintenance. The respiratory probe was used to monitor the breath 
rate throughout the MRI experiments. The respiration rate and body 
temperature during the scan in 7 T were 60–70 times/min and 38.5–
39.5°C, respectively. Prior B0 shimming was used to eliminate signal 
interference of the B0 inhomogeneity in the experiments. Imaging 
parameters were as follows: repetition time (TR) = 6,000 ms, echo time 
(TE) = 40 ms, array = frequency offsets, slice thickness = 2 mm, field of 
view (FOV) = 64 × 64 mm, matrix size = 64 × 64, spatial resolution = 1× 
1 mm, and averages = 1. An echo planar imaging (EPI) readout 
sequence was used to obtain CEST images where continuous wave 
(CW) RF irradiation was implemented on scanners. Some parameters 
of the EPI sequence are saturation power = 1.2 μT, RF pulse 
duration = 1,500 ms, pulse shape = rectangular RF pulse, and shot 
number = single shot.

The experimentally acquired CEST images at 11 frequency offsets 
F = [−6.00, −3.60, −2.64, −1.68, −1.20, 0.96, 1.92, 2.76, 3.36, 3.96, and 
6.00] ppm were the inputs of considered reconstruction models. The 
experimentally acquired CEST images at 101 frequency offsets evenly 
distributed from −6 to 6 ppm were used to evaluate the performance 
of the reconstruction model by comparing the estimates with the 
experimental data values (ground truth).

2.2 Training dataset

In this study, Z-spectra simulations were performed to train the 
considered networks, solving the labor-intensive and time-consuming 
task of obtaining labeled training data from actual experiments. 
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Simulated CEST Z-spectra at non-uniform sparse frequency offsets 
and uniform dense frequency offsets were obtained using a 7-pool 
Bloch–McConnell equation (Xiao et al., 2023). This 7-pool model 
consists of free water centered at 0 ppm, amide centered at 3.5 ppm, 
guanidyl/amine centered at 2.0 ppm, hydroxyl centered at 1.3 ppm, 
nuclear Overhauser enhancement (NOE) centered at −1.6 ppm, 
magnetization transfer (MT) centered at −2.4 ppm, and NOE centered 
at −3.5 ppm.

The multi-pool properties of in vivo Bloch–McConnell 
simulations are listed in Table  1 (Tang et  al., 2023). In total, 20 
dynamic parameters were considered for tissue combinations. For 
each parameter, their variables were randomly sampled in a uniform 
distribution between the lower bound (LB) and upper bound (UB). In 
practice, the sampled variables of each parameter interacting with that 
of each other generated 350,000 parameter combinations, thus 
yielding 350,000 simulated Z-spectra (Supplementary Figure S1).

2.3 Training process

In the training process, 50 epochs and a batch size of 512 were 
used for training; the initial learning rate was 0.001, the learning rate 
was halved every five epochs, and the random deactivation ratio was 
0.2. Adam was used as the training optimizer, and RELU was the 
activation function. The 350,000 paired CEST data obtained by the 
Bloch-McConnell equation were divided into training and validation 
sets in a ratio of 7:3, with data at sparse frequency offsets as input and 
data at dense frequency offsets as target. The CEST images at sparse 
and dense frequency offsets obtained from the actual MRI experiments 
were used as the test set. The experimentally acquired CEST images at 
sparse frequency offsets were input to the trained seq2seq model to 
reconstruct the dense CEST images, and the reconstructed data were 
compared with the ground-truth (experimentally acquired CEST 
images at dense frequency offsets) to evaluate the performance of 
considered models.

2.4 Evaluation metrics and workstation

To evaluate the proposed model in reconstructing Z-spectra for 
each pixel of CEST images, the absolute error modulus, the regress 
analysis (Nagelkerke, 1991), the structural similarity index (SSIM), 
and the peak signal-to-noise ratio (PSNR) (Hore and Ziou, 2010) were 

applied to evaluate the reconstruction performance of the proposed 
model and its counterparts.

The workstation used in this study was a Dell T7810 workstation 
with 16 G memory, dual-core CPU12 core, and a 3.4 G main operating 
frequency. The experiments were based on PyTorch. We initialized the 
weights using samples from a uniform distribution N(0,0.01) and used 
the MSE-Loss as the loss function.

2.5 Sequence-to-sequence model for 
reconstructing dense Z-spectra

To reconstruct dense CEST Z-spectra by the seq2seq models, 
recurrent neural network (RNN) (Sherstinsky, 2020), LSTM (Sherstinsky, 
2020), gate recurrent unit (GRU) (Dey and Salem, 2017), TCN (Bai et al., 
2018), and the proposed TCN-LSTM are considered. In addition, the 
multiple-pool Lorentzian fitting (Cui et  al., 2022) is included in 
comparison experiments, as described in Supplementary material S1. 
The introduction of RNN, LSTM, and GRU is presented in 
Supplementary material S2. The principle of TCN and TCN-LSTM 
network is briefly described in Supplementary material S3.

Figure 1 depicts the flowchart of the considered seq2seq models 
when they are applied to reconstruct dense Z-spectra and dense CEST 
images. The simulated Z-spectra are generated by using the Bloch–
McConnell equations. Simulated Z-spectra at sparse and dense 
frequency offsets are used to train the seq2seq network. The main 
intuition behind simulated data is that we can generate as much data 
as needed with all possible tissue combinations to train a seq2seq 
network. Then, the trained seq2seq network is used to reconstruct 
dense Z-spectra from experimentally acquired Z-spectra for each 
pixel of CEST images at sparse frequency offsets. The sequence-to-
imaging reconstruction for each pixel of dense CEST images is 
generated by the output Z-spectra.

3 Results

3.1 CEST Z-spectra reconstruction

Figures 2–4 present the reconstructed Z-spectra of each model for 
a randomly chosen pixel at white matter, gray matter, and tumor, 
respectively. The multiple-pool Lorentzian fitting demonstrates good 
consistency when they reconstruct Z-spectra at the known input 

TABLE 1 Summary of the parameters in generating simulated data: solute concentration (fs), solute-water exchange rate (ksw), longitudinal relaxation 
time (T1), transverse relaxation time (T2), and solute resonance frequency offset (Δ).

fs(10−3) ksw(s−1) T1(s) T2(ms) Δ(ppm)

Amide

LB ~ UB

0.1 ~ 3 1 ~ 100 1 ~ 1 0.5 ~ 100 3.5

Guanidyl/Amine 0.1 ~ 2 100 ~ 1,000 1 ~ 1 0.1 ~ 5 2

Hydroxyl 0.1 ~ 10 100 ~ 2000 1 ~ 1 0.1 ~ 5 1.3

Free water 1,000 ~ 1,000 – 1 ~ 3 20 ~ 100 0

NOE (−1.6) 1 ~ 5 1 ~ 50 1 ~ 1 0.1 ~ 1 −1.6

MT 10 ~ 200 1 ~ 50 1 ~ 1 0.01 ~ 0.1 −2.4

NOE (−3.5) 10 ~ 50 1 ~ 40 1 ~ 1 1 ~ 10 −3.5

https://doi.org/10.3389/fnins.2023.1323131
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xiao et al. 10.3389/fnins.2023.1323131

Frontiers in Neuroscience 04 frontiersin.org

frequency offsets, while it shows high volatility or shift with the 
Z-spectral points between [−2 ppm and 2 ppm]. In contrast, RNN, 
LSTM, and GRU achieve high accuracy and consistency, when they 
reconstruct the Z-spectra points around 0 ppm, but the curves of 
reconstructed Z-spectra deviate from the ground truth over other 
frequency ranges. Note that the TCN-LSTM model displayed a great 
agreement with the ground truth around turning points, following the 
same tendency of actual measurements.

3.2 CEST image reconstruction

To investigate the potential for the considered methods to 
accurately reconstruct CEST images, we  initially conducted an 
experiment at frequency offsets −3.48 ppm, −2.40 ppm, −1.56 ppm, 

1.30 ppm, 2.04 ppm, and 3.48 ppm, as shown in Figure 5. The region 
of the pseudo-color image overlaid on the anatomy image was the 
region of interest (ROI). From this figure, the reconstructed results 
obtained by the considered methods were almost identical to the 
ground truth. Considering the limited visualization by the naked eye, 
we further compared these methods using other evaluation metrics, 
as shown in Figure 6. In Figures 6A–F were the absolute error modulus 
of Lorentzian, RNN, LSTM, GRU, TCN, and TCN-LSTM when they 
were compared with the experimentally acquired CEST images 
(ground-truth), respectively. It was clear that the strength of each 
method strategy was sufficient to reconstruct patterns at these offsets. 
As a next step, Figure 6G depicted the mean values of absolute error 
modulus when the considered models were applied to CEST images 
at each offset (−6 ~ 6 ppm) for ROI. There were large deviations 
between the Lorentzian fitting and the ground truth in the range of 

FIGURE 1

The flowchart of the developed seq2seq framework when it is applied to reconstruct dense CEST Z-spectra from experimentally acquired images at 
sparse frequency offsets.
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[−2 ppm and 2 ppm], while RNN, LSTM, GRU, TCN, and TCN-LSTM 
gave satisfactory results along each frequency offset.

In practice, the smaller values of absolute error modulus indicate 
better visual quality, yet no standards of CEST image quality have been 
published. From Figures  5, 6G, the threshold of absolute error 
modulus below 3% should be acceptable if we consider both subjective 
experience and objective factors.

3.3 Statistical analysis

The regression analysis on the ROI-based whole data of 
reconstructed CEST images at 101 frequency offsets was designed to 
assess the general performances of our TCN-LSTM and its 
counterparts. Figure 7 displays the linear regression plots obtained 
from the different models tested in this analysis. Note that the 
coefficient of determination R2 denotes the proportion of the 
variability that can be attributed to its linear relation with the ground 
truth. It can be  observed that RNN, LSTM, GRU, TCN, and 
TCN-LSTM perform well in this analysis (R2 > 0.985), and the results 
support the observation that the reconstructions for the whole data 
seem to be fully consistent with the ground truth. The method based 
on TCN-LSTM presents a better agreement between its reconstruction 
and the ground truth (R2 = 0.9969). It should be  noted that the 
multiple-pool Lorentzian fitting provides a lower coefficient of 
determination and the scatters deviate from the 45-degree diagonal 
because Lorentzian fitting can only reconstruct Z-spectra at the 
known input frequency offsets.

3.4 CEST image quality assessment

To set up a comprehensive way to evaluate the performance of 
different methods, Figure 8 demonstrates the SSIM and PSNR from 
the ground truth and the reconstruction at each offset (−6 ~ 6 ppm). 

Table  2 lists the mean values of SSIM and PSNR obtained by 
considered methods. Clearly, our model exhibits competitive results 
at each offset in terms of these two metrics, and other methods are 
good at both SSIM and PSNR.

4 Discussion

As mentioned above, we know that reducing scan time while 
preserving image quality is crucial in CEST-MRI. In fact, due to the 
physical limitation of an MRI scanner, it is difficult to juggle scan time 
and CEST image quality in some scenarios. In this paper, 
we implemented seq2seq as a novel model to provide dense Z-spectra 
reconstruction for each pixel of CEST images from experimentally 
acquired CEST images at sparse frequency offsets. In the experimental 
analysis, the effectiveness of the multiple-pool Lorentzian fitting and 
the seq2seq models in terms of the absolute error modulus, the 
regression analysis, the SSIM, and the PNSR are validated. It should 
be  noted that the case studies of this paper were performed with 
B1 < 2μT. Since our simulated Z-spectra were generated using the 
Bloch–McConnell equation, the proposed reconstruction model can 
be extended to other B1 fields by adjusting pool size.

In fact, CEST Z-spectra is characterized as a process of short- and 
long-term memory (Supplementary Figure S2). Fortunately, the 
TCN-LSTM can capture the short-long correlation of time series by 
combining TCN and LSTM, achieving the purpose of obtaining the 
complete propagation information of each point for the input 
sequence. By training the TCN-LSTM, we  can solve the inverse 
problem of inferring the parameters of interest from the measured 
data. Consequently, the TCN-LSTM’s potential in a wide range of 
missing data problems can be even greater than the multiple-pool 
Lorentzian fitting and other seq2seq models (Figures 2–4). By that, the 
performance of TCN-LSTM in terms of regression analysis between 
the reconstruction and the ground truth is surprising, revealing the 
highest coefficient of determination (Figure  7). In image quality 

FIGURE 2

Comparison between the reconstructed Z-spectra with the experimentally acquired result for a randomly chosen pixel at gray matter.
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assessment, the TCN-LSTM consistently provided better 
performances in terms of the SSIM and PSNR (Figure 8; Table 2).

Also, the training of deep networks for predicting objects requires 
a large dataset with high quality, which is extremely expensive to 
construct in experiments. In fact, the measured Z-spectra can 
be  derived by solutions of the Bloch–McConnell equations, as 
presented in this study. To solve this problem, we built an automatically 
labeled dataset based on our designed Bloch–McConnell equations by 
considering various parameters in a wide range (Table 1). This is a 
notable advantage of our simulator because the accuracy of the 
reconstruction is no longer strictly limited by the sample size and 
experimental conditions, allowing improvement in the efficiency and 
quality of training. With that, our CEST simulator successfully 

implemented the generation of the training dataset, and the 
experimental results proved its superiority.

5 Conclusion

In this paper, the authors developed a seq2seq framework to 
reconstruct high-quality dense Z-spectra for each pixel of CEST 
images from experimentally acquired CEST images at sparse 
frequency offsets, demonstrating that general dynamics can be learned 
from simulated scenes and applied to CEST datasets acquired in 
experiments. The developed seq2seq framework can achieve the 
reconstruction of dense CEST images simultaneously only by 

FIGURE 4

Comparison between the reconstructed Z-spectra with the experimentally acquired result for a randomly chosen pixel at the tumor.

FIGURE 3

Comparison between the reconstructed Z-spectra with the experimentally acquired result for a randomly chosen pixel at white matter.
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inputting a Z-spectra for each pixel, allowing scan time reduction and 
solving the task of high-quality CEST data reconstruction.
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FIGURE 5

The reconstructed CEST images at frequency offsets −3.48  ppm, −2.40  ppm, −1.56  ppm, 1.30  ppm, 2.04  ppm, and 3.48  ppm when the considered 
methods are applied to reconstruct dense CEST images from experimentally acquired images at sparse frequency offsets.
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FIGURE 6

Comparisons of the reconstructed CEST images with the ground-truth. (A–F) indicate the absolute error modulus of Lorentzian, RNN, LSTM, GRU, 
TCN and TCN-LSTM when they are compared with ground-truth at frequency offsets −3.48 ppm, −2.40 ppm, −1.56 ppm, 1.30 ppm, 2.04 ppm and  
3.48 ppm. (G) The mean values of absolute error modulus across each offset (−6~6 ppm).
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TABLE 2 Mean values of SSIM and PSNR obtained by the considered methods when they are applied to reconstruct dense Z-spectra from 
experimentally acquired images at 11 frequency offsets.

Lorentzian RNN LSTM GRU TCN TCN-LSTM

SSIM 0.9875 0.9967 0.9971 0.9973 0.9984 0.9989

PSNR 47.7917 42.5169 42.6597 43.0040 45.8753 50.3227

FIGURE 7

Regression analysis of considered methods when they are applied to reconstruct dense CEST images from experimentally acquired images at sparse 
frequency offsets. (A–F) Denote the results of Lorentzian, RNN, LSTM, GRU, TCN, and TCN-LSTM, respectively.

FIGURE 8

SSIM and PSNR of considered methods when they are applied to reconstruct dense CEST images from experimentally acquired images at sparse 
frequency offsets.
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