48 research outputs found

    Modulation recognition of low-SNR UAV radar signals based on bispectral slices and GA-BP neural network

    Get PDF
    In this paper, we address the challenge of low recognition rates in existing methods for radar signals from unmanned aerial vehicles (UAV) with low signal-to-noise ratios (SNRs). To overcome this challenge, we propose the utilization of the bispectral slice approach for accurate recognition of complex UAV radar signals. Our approach involves extracting the bispectral diagonal slice and the maximum bispectral amplitude horizontal slice from the bispectrum amplitude spectrum of the received UAV radar signal. These slices serve as the basis for subsequent identification by calculating characteristic parameters such as convexity, box dimension, and sparseness. To accomplish the recognition task, we employ a GA-BP neural network. The significant variations observed in the bispectral slices of different signals, along with their robustness against Gaussian noise, contribute to the high separability and stability of the extracted bispectral convexity, bispectral box dimension, and bispectral sparseness. Through simulations involving five radar signals, our proposed method demonstrates superior performance. Remarkably, even under challenging conditions with an SNR as low as −3 dB, the recognition accuracy for the five different radar signals exceeds 90%. Our research aims to enhance the understanding and application of modulation recognition techniques for UAV radar signals, particularly in scenarios with low SNRs

    Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years

    Get PDF
    The Tibetan Plateau exerts a major influence on Asian climate, but its long-term environmental history remains largely unknown. We present a detailed record of vegetation and climate changes over the past 1.74 million years in a lake sediment core from the Zoige Basin, eastern Tibetan Plateau. Results show three intervals with different orbital- and millennial-scale features superimposed on a stepwise long-term cooling trend. The interval of 1.74–1.54 million years ago is characterized by an insolation-dominated mode with strong ~20,000-year cyclicity and quasi-absent millennial-scale signal. The interval of 1.54–0.62 million years ago represents a transitional insolation-ice mode marked by ~20,000- and ~40,000-year cycles, with superimposed millennial-scale oscillations. The past 620,000 years are characterized by an ice-driven mode with 100,000-year cyclicity and less frequent millennial-scale variability. A pronounced transition occurred 620,000 years ago, as glacial cycles intensified. These new findings reveal how the interaction of low-latitude insolation and high-latitude ice-volume forcing shaped the evolution of the Tibetan Plateau climate.publishedVersio

    Seismic Performance of a Corroded Reinforce Concrete Frame Structure Using Pushover Method

    No full text
    SAP2000 software was used to build the finite element model of a six-storey-three-span reinforced concrete (RC) frame structure. The numerical simulation of the seismic performance of the RC frame structure incorporating different levels of rebar corrosion was conducted using pushover analysis method. The degradation characteristics of the seismic performance of the corroded structure under severe earthquake were also analyzed. The results show that the seismic performance of the RC frame decreased significantly due to corrosion of the longitudinal rebars. And the interstory drift ratios increase dramatically with the increasing of the corrosion rate. At the same time, the formation and development of plastic hinges (beam hinges or column hinges) will accelerate, which leads to a more aggravated deformation of the structure under rare earthquake action, resulting in a negative effect to the seismic bearing capacity of the structure

    A new installation technology of large diameter deeply-buried caissons: Practical application and observed performance

    No full text
    The development of installation technologies of open caissons has been lagging behind increasingly complex construction conditions. For such purpose, a new installation technology of large diameter deeply-buried (LDDB) open caissons has been developed and then used for construction of twin LDDB caissons into undrained ground with stiff soils in Zhenjiang, China. To assess the installation effects and filed performance, a monitoring program was presented to document the variations in total jacking forces provided by new shaft driven method, ground water level (GWL) around the caisson shaft, inclination angles of caisson shafts and radial displacements of surrounding soils as well as surface settlements of existing nearby facilities. It is observed that the monitoring data during the installation falls almost entirely within the design criteria, the reported new technology has limited impacts on the induced ground movements, depending on the variation in GWL, interaction between twin caissons and excavation-induced unloading effect. Moreover, the total jacking forces increase approximately in stepwise shape as the installation depth increases; the change law of surface settlements is highly similar to those of GWL, showing their close correlation; the larger inclination angles of caisson shafts are mainly encountered in the earlier installation phase, but well controllable. Further discussion on ground movements caused by various technologies confirms the feasibility of new installation technology. Both the observed and compared results give greater confidence on the use of such the technology in practice.</p
    corecore