30 research outputs found

    A water-soluble core material for manufacturing hollow composite sections

    Get PDF
    This paper presents the development of a low-cost water-soluble core material, which is suitable for producing hollow composite structures via high pressure moulding processes, such as compression moulding and resin transfer moulding. The bulk material of the core is sodium chloride (NaCl), which is held together by a watersoluble trehalose binder. The composition of the core has been optimised to provide acceptable dissolution rates and mechanical properties for high volume structural composite applications. The compressive strength of the NaCl core was 57 MPa at ambient temperature, which reduced to 20 MPa when tested at 120 °C. The compressive strength at elevated temperature was approximately 4 times higher than for a water-soluble commercial benchmark and 33 times higher than a conventional structural closed-cell foam. The specific dissolution rate of the NaCl core was between 0.14 and 1.23 kg/(min·m2), depending on processing parameters and the coefficient of thermal expansion was approximately 43 × 10−6/K. A practical example has been presented to demonstrate how the removable core can be used to produce a representative hollow section of an integrally stiffened panel

    Effect of Die-Surface Treatment on Magnesium Alloys Fluidity

    No full text

    Phase Equilibria in Ni-Rich Portion of Ni-Si System

    No full text

    Monolayer-to-bilayer transformation of silicenes and their structural analysis

    No full text
    Silicene, a two-dimensional honeycomb network of silicon atoms like graphene, holds great potential as a key material in the next generation of electronics; however, its use in more demanding applications is prevented because of its instability under ambient conditions. Here we report three types of bilayer silicenes that form after treating calcium-intercalated monolayer silicene (CaSi 2) with a BF 4 '-based ionic liquid. The bilayer silicenes that are obtained are sandwiched between planar crystals of CaF 2 and/or CaSi 2, with one of the bilayer silicenes being a new allotrope of silicon, containing four-, five-and six-membered sp 3 silicon rings. The number of unsaturated silicon bonds in the structure is reduced compared with monolayer silicene. Additionally, the bandgap opens to 1.08 eV and is indirect; this is in contrast to monolayer silicene which is a zero-gap semiconductor
    corecore