93 research outputs found

    Self-supervised learning-based general laboratory progress pretrained model for cardiovascular event detection

    Full text link
    The inherent nature of patient data poses several challenges. Prevalent cases amass substantial longitudinal data owing to their patient volume and consistent follow-ups, however, longitudinal laboratory data are renowned for their irregularity, temporality, absenteeism, and sparsity; In contrast, recruitment for rare or specific cases is often constrained due to their limited patient size and episodic observations. This study employed self-supervised learning (SSL) to pretrain a generalized laboratory progress (GLP) model that captures the overall progression of six common laboratory markers in prevalent cardiovascular cases, with the intention of transferring this knowledge to aid in the detection of specific cardiovascular event. GLP implemented a two-stage training approach, leveraging the information embedded within interpolated data and amplify the performance of SSL. After GLP pretraining, it is transferred for TVR detection. The proposed two-stage training improved the performance of pure SSL, and the transferability of GLP exhibited distinctiveness. After GLP processing, the classification exhibited a notable enhancement, with averaged accuracy rising from 0.63 to 0.90. All evaluated metrics demonstrated substantial superiority (p < 0.01) compared to prior GLP processing. Our study effectively engages in translational engineering by transferring patient progression of cardiovascular laboratory parameters from one patient group to another, transcending the limitations of data availability. The transferability of disease progression optimized the strategies of examinations and treatments, and improves patient prognosis while using commonly available laboratory parameters. The potential for expanding this approach to encompass other diseases holds great promise.Comment: published in IEEE Journal of Translational Engineering in Health & Medicin

    AV-SUPERB: A Multi-Task Evaluation Benchmark for Audio-Visual Representation Models

    Full text link
    Audio-visual representation learning aims to develop systems with human-like perception by utilizing correlation between auditory and visual information. However, current models often focus on a limited set of tasks, and generalization abilities of learned representations are unclear. To this end, we propose the AV-SUPERB benchmark that enables general-purpose evaluation of unimodal audio/visual and bimodal fusion representations on 7 datasets covering 5 audio-visual tasks in speech and audio processing. We evaluate 5 recent self-supervised models and show that none of these models generalize to all tasks, emphasizing the need for future study on improving universal model performance. In addition, we show that representations may be improved with intermediate-task fine-tuning and audio event classification with AudioSet serves as a strong intermediate task. We release our benchmark with evaluation code and a model submission platform to encourage further research in audio-visual learning.Comment: Submitted to ICASSP 2024; Evaluation Code: https://github.com/roger-tseng/av-superb Submission Platform: https://av.superbbenchmark.or

    Applying Factor Analysis Combined with Kriging and Information Entropy Theory for Mapping and Evaluating the Stability of Groundwater Quality Variation in Taiwan

    Get PDF
    In Taiwan many factors, whether geological parent materials, human activities, and climate change, can affect the groundwater quality and its stability. This work combines factor analysis and kriging with information entropy theory to interpret the stability of groundwater quality variation in Taiwan between 2005 and 2007. Groundwater quality demonstrated apparent differences between the northern and southern areas of Taiwan when divided by the Wu River. Approximately 52% of the monitoring wells in southern Taiwan suffered from progressing seawater intrusion, causing unstable groundwater quality. Industrial and livestock wastewaters also polluted 59.6% of the monitoring wells, resulting in elevated EC and TOC concentrations in the groundwater. In northern Taiwan, domestic wastewaters polluted city groundwater, resulting in higher NH3-N concentration and groundwater quality instability was apparent among 10.3% of the monitoring wells. The method proposed in this study for analyzing groundwater quality inspects common stability factors, identifies potential areas influenced by common factors, and assists in elevating and reinforcing information in support of an overall groundwater management strategy

    Visible Light Responsive Photocatalyst Induces Progressive and Apical-Terminus Preferential Damages on Escherichia coli Surfaces

    Get PDF
    BACKGROUND: Recent research shows that visible-light responsive photocatalysts have potential usage in antimicrobial applications. However, the dynamic changes in the damage to photocatalyzed bacteria remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: Facilitated by atomic force microscopy, this study analyzes the visible-light driven photocatalyst-mediated damage of Escherichia coli. Results show that antibacterial properties are associated with the appearance of hole-like structures on the bacteria surfaces. Unexpectedly, these hole-like structures were preferentially induced at the apical terminus of rod shaped E. coli cells. Differentiating the damages into various levels and analyzing the percentage of damage to the cells showed that photocatalysis was likely to elicit sequential damages in E. coli cells. The process began with changing the surface properties on bacterial cells, as indicated in surface roughness measurements using atomic force microscopy, and holes then formed at the apical terminus of the cells. The holes were then subsequently enlarged until the cells were totally transformed into a flattened shape. Parallel experiments indicated that photocatalysis-induced bacterial protein leakage is associated with the progression of hole-like damages, further suggesting pore formation. Control experiments using ultraviolet light responsive titanium-dioxide substrates also obtained similar observations, suggesting that this is a general phenomenon of E. coli in response to photocatalysis. CONCLUSION/SIGNIFICANCE: The photocatalysis-mediated localization-preferential damage to E. coli cells reveals the weak points of the bacteria. This might facilitate the investigation of antibacterial mechanism of the photocatalysis

    The Use of Nanoscale Visible Light-Responsive Photocatalyst TiO2-Pt for the Elimination of Soil-Borne Pathogens

    Get PDF
    Exposure to the soil-borne pathogens Burkholderia pseudomallei and Burkholderia cenocepacia can lead to severe infections and even mortality. These pathogens exhibit a high resistance to antibiotic treatments. In addition, no licensed vaccine is currently available. A nanoscale platinum-containing titania photocatalyst (TiO2-Pt) has been shown to have a superior visible light-responsive photocatalytic ability to degrade chemical contaminants like nitrogen oxides. The antibacterial activity of the catalyst and its potential use in soil pathogen control were evaluated. Using the plating method, we found that TiO2-Pt exerts superior antibacterial performance against Escherichia coli compared to other commercially available and laboratory prepared ultraviolet/visible light-responsive titania photocatalysts. TiO2-Pt-mediated photocatalysis also affectively eliminates the soil-borne bacteria B. pseudomallei and B. cenocepacia. An air pouch infection mouse model further revealed that TiO2-Pt-mediated photocatalysis could reduce the pathogenicity of both strains of bacteria. Unexpectedly, water containing up to 10% w/v dissolved soil particles did not reduce the antibacterial potency of TiO2-Pt, suggesting that the TiO2-Pt photocatalyst is suitable for use in soil-contaminated environments. The TiO2-Pt photocatalyst exerted superior antibacterial activity against a broad spectrum of human pathogens, including B. pseudomallei and B. cenocepacia. Soil particles (<10% w/v) did not significantly reduce the antibacterial activity of TiO2-Pt in water. These findings suggest that the TiO2-Pt photocatalyst may have potential applications in the development of bactericides for soil-borne pathogens

    Photocatalytic Degradation of Using Ni-Containing TiO2

    No full text
    The nickel-containing titania was synthesized and employed in the photomineralization of . A nickel-modified titania photocatalyst was prepared by photodeposition method with using Degussa-P25 TiO2 particle and nickel chloride as raw materials, respectively. The physical analyses were carried out using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance electron microscope (TEM), and photoluminescence spectroscopy (PL), to observe changes in particles following nickel modification. The results showed that Ni does not enter into the crystal lattice and is dispersed onto the surface uniformly. Ni improved the intensity of PL spectra with an appropriate Ni content on the surface. The modified titanium dioxide with 0.1 mol% of nickel exhibited two times the -removal activity of bare under ultraviolet illumination. The nickel content in this photodeposition process plays an important role in affinity to molecules, recombination rate of electron-hole pair, and content of active site on the surface and therefore affects the optical and photocatalytic properties

    Synthesis of Quaternary Ammonium Room-Temperature Ionic Liquids and their Application in the Dissolution of Cellulose

    No full text
    In this work, several kinds of quaternary ammonium-based room-temperature ionic liquids (QA RTILs) are synthesized by alkylation and ion-exchange reactions for the rapid dissolution of cellulose. The applications of cellulose materials have been limited due to their poor solubility in conventional organic solvents, because of a high degree of structural regularity and a large number of hydrogen bonds. The prepared ionic liquids were identified by nuclear magnetic resonance, elemental analysis, and liquid chromatography-mass spectrometry. The results indicated that N,N,N-triethylhexan-1-aminium acetate (N6222OAc), tetrahexylammonium acetate (N6666OAc), and N,N,N,N&#8242;,N&#8242;,N&#8242;-hexaethyldecane-1,10-diaminium acetate (C10(N222OAc)2) exhibited good cellulose-dissolution without any pretreatment. The regenerated cellulose films with a low degree of crystallization of the cellulose II phase were also prepared easily in this process using N6222OAc due to its polar and small cation. These QA RTILs can be used as non-derivatizing solvents for cellulose and can also be easily recycled because of their thermostable and nonvolatile properties
    • …
    corecore