11,027 research outputs found

    Stabilization of multiple resistance levels by current-sweep in SiOx-based resistive switching memory

    Get PDF
    Using current-sweep measurements, the set process in SiOx-based resistive random access memory (RRAM) has been found to consist of multiple resistance-reduction steps. Variation in set behaviors was observed and attributed to different defect distributions in the resistance switching region. Physical mechanism of electroforming process is discussed, which further explains the observed variation of defect distributions. A compliance current study confirms that the achievable memory states of SiOx RRAM are determined by its set behavior. This finding provides additional insight on achieving multi-bit memory storage with SiOx RRAM. (C) 2015 AIP Publishing LLC.Microelectronics Research Cente

    Participant Network Patterns in Enhancing Online Community Interactivity

    Get PDF
    Social media is having an increasing impact on businesses. In particular, the explosive growth of online brand communities has attracted organizations and marketers’ attentions. However, despite the increasing importance of online community for marketing, it is noticed that relatively few of them are successful in attracting community members and enhancing interactivity. In this study, we argue that it is necessary to have a comprehensive understanding regarding how the community members participate in the communal context and interact with each other, and thereby the community interactivity can be continued. To this end, we collected a large amount of data from an online discussion forum where we found that the participants were highly interactive across the discussion topics, thus forming robust communities. Currently, the data analysis pertaining to this study is work in progress, but we will be in a position to offer more in-depth analysis of the rich findings that the research has generated by the time of the conference

    Anatomy-specific classification of medical images using deep convolutional nets

    Full text link
    Automated classification of human anatomy is an important prerequisite for many computer-aided diagnosis systems. The spatial complexity and variability of anatomy throughout the human body makes classification difficult. "Deep learning" methods such as convolutional networks (ConvNets) outperform other state-of-the-art methods in image classification tasks. In this work, we present a method for organ- or body-part-specific anatomical classification of medical images acquired using computed tomography (CT) with ConvNets. We train a ConvNet, using 4,298 separate axial 2D key-images to learn 5 anatomical classes. Key-images were mined from a hospital PACS archive, using a set of 1,675 patients. We show that a data augmentation approach can help to enrich the data set and improve classification performance. Using ConvNets and data augmentation, we achieve anatomy-specific classification error of 5.9 % and area-under-the-curve (AUC) values of an average of 0.998 in testing. We demonstrate that deep learning can be used to train very reliable and accurate classifiers that could initialize further computer-aided diagnosis.Comment: Presented at: 2015 IEEE International Symposium on Biomedical Imaging, April 16-19, 2015, New York Marriott at Brooklyn Bridge, NY, US

    Microplastic Contamination of Three Commonly Consumed Seafood Species from Taiwan: A Pilot Study

    Get PDF
    Microplastics have already been detected in various human foods, especially seafood. This problem should be especially pertinent to the Taiwanese public because a relatively high proportion of people’s diet comes from seafood. Therefore, a pilot study of microplastic contamination of seafood products commonly consumed by Taiwanese people is presented. Six batches of three seafood species were examined for the presence of microplastics using FTIR spectroscopy. A total of 107 seafood individuals from three species (hard clam Meretrix lusoria, oyster Crassostrea gigas, Loligo squid Loliginidae spp.) weighing a total of 994 g yielded a total of 100 microplastic particles consisting of nine different polymer types. The most common polymer types were polypropylene, poly(ethylene:propylene:diene), and polyethylene terephthalate; we also detected six additional, but less common polymer types. A total of 91% of microplastic particles were fragments that likely originated from fragmented plastic debris which was then consumed by the seafood species; the remaining particles were fibers and a pellet. The mean number of microplastics kg−1 was 87.9 microplastics kg−1 across the three examined species. Given that the Taiwanese public average about 10 kg of seafood consumption per year, a few thousand microplastic particles are estimated to be annually consumed on average. The methodology of this pilot study can now be used to conduct examinations of more seafood species and samples

    Enhancing performance of ZnO dye-sensitized solar cells by incorporation of multiwalled carbon nanotubes

    Get PDF
    A low-temperature, direct blending procedure was used to prepare composite films consisting of zinc oxide [ZnO] nanoparticles and multiwalled carbon nanotubes [MWNTs]. The mesoporous ZnO/MWNT films were fabricated into the working electrodes of dye-sensitized solar cells [DSSCs]. The pristine MWNTs were modified by an air oxidation or a mixed acid oxidation treatment before use. The mixed acid treatment resulted in the disentanglement of MWNTs and facilitated the dispersion of MWNTs in the ZnO matrix. The effects of surface property and loading of MWNTs on DSSC performance were investigated. The performance of DSSCs was found to depend greatly on the type and the amount of MWNTs incorporated. At a loading of 0.01 wt%, the acid-treated MWNTs were able to increase the power conversion efficiency of fabricated cells from 2.11% (without MWNTs) to 2.70%
    • …
    corecore