27,326 research outputs found

    Does a proton "bubble" structure exist in the low-lying states of 34Si?

    Full text link
    The possible existence of a "bubble" structure in the proton density of 34^{34}Si has recently attracted a lot of research interest. To examine the existence of the "bubble" structure in low-lying states, we establish a relativistic version of configuration mixing of both particle number and angular momentum projected quadrupole deformed mean-field states and apply this state-of-the-art beyond relativistic mean-field method to study the density distribution of the low-lying states in 34^{34}Si. An excellent agreement with the data of low-spin spectrum and electric multipole transition strengths is achieved without introducing any parameters. We find that the central depression in the proton density is quenched by dynamic quadrupole shape fluctuation, but not as significantly as what has been found in a beyond non-relativistic mean-field study. Our results suggest that the existence of proton "bubble" structure in the low-lying excited 02+0^+_2 and 21+2^+_1 states is very unlikely.Comment: 6 pages, 8 figures and 1 table, accepted for publication in Physics Letters

    Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N\approx60

    Full text link
    The shape evolution and shape coexistence phenomena in neutron-rich nuclei at N60N\approx60, including Kr, Sr, Zr, and Mo isotopes, are studied in the covariant density functional theory (DFT) with the new parameter set PC-PK1. Pairing correlations are treated using the BCS approximation with a separable pairing force. Sharp rising in the charge radii of Sr and Zr isotopes at N=60 is observed and shown to be related to the rapid changing in nuclear shapes. The shape evolution is moderate in neighboring Kr and Mo isotopes. Similar as the results of previous Hartree-Fock-Bogogliubov (HFB) calculations with the Gogny force, triaxiality is observed in Mo isotopes and shown to be essential to reproduce quantitatively the corresponding charge radii. In addition, the coexistence of prolate and oblate shapes is found in both 98^{98}Sr and 100^{100}Zr. The observed oblate and prolate minima are related to the low single-particle energy level density around the Fermi surfaces of neutron and proton respectively. Furthermore, the 5-dimensional (5D) collective Hamiltonian determined by the calculations of the PC-PK1 energy functional is solved for 98^{98}Sr and 100^{100}Zr. The resultant excitation energy of 02+0^+_2 state and E0 transition strength ρ2(E0;02+01+)\rho^2(E0;0^+_2\rightarrow0^+_1) are in rather good agreement with the data. It is found that the lower barrier height separating the two competing minima along the γ\gamma deformation in 100^{100}Zr gives rise to the larger ρ2(E0;02+01+)\rho^2(E0;0^+_2\rightarrow0^+_1) than that in 98^{98}Sr.Comment: 1 table, 11 figures, 23 page

    New neighborhood based rough sets

    Get PDF
    Neighborhood based rough sets are important generalizations of the classical rough sets of Pawlak, as neighborhood operators generalize equivalence classes. In this article, we introduce nine neighborhood based operators and we study the partial order relations between twenty-two different neighborhood operators obtained from one covering. Seven neighborhood operators result in new rough set approximation operators. We study how these operators are related to the other fifteen neighborhood based approximation operators in terms of partial order relations, as well as to seven non-neighborhood-based rough set approximation operators

    Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout

    Full text link
    The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218 associated with supernova SN 2006aj may imply an interesting astronomical picture where a supernova shock breakout locates behind a relativistic GRB jet. Based on this picture, we study neutrino emission for early afterglows of GRB 060218-like GRBs, where neutrinos are expected to be produced from photopion interactions in a GRB blast wave that propagates into a dense wind. Relativistic protons for the interactions are accelerated by an external shock, while target photons are basically provided by the incoming thermal emission from the shock breakout and its inverse-Compton scattered component. Because of a high estimated event rate of low-luminosity GRBs, we would have more opportunities to detect afterglow neutrinos from a single nearby GRB event of this type by IceCube. Such a possible detection could provide evidence for the picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA

    Mass and width of the sigma

    Full text link
    I report on recent work done in collaboration with Irinel Caprini and Gilberto Colangelo. We observe that the Roy equations lead to a representation of the pion pion scattering amplitude that exclusively involves observable quantities, but is valid for complex values of s. At low energies, this representation is dominated by the contributions from the two subtraction constants, which are known to remarkable precision from the low energy theorems of chiral perturbation theory. Evaluating the remaining contributions on the basis of the available data, we demonstrate that the lowest resonance carries the quantum numbers of the vacuum and occurs in the vicinity of the threshold. Although the uncertainties in the data are substantial, the pole position can be calculated quite accurately, because it occurs in the region where the amplitude is dominated by the subtractions. The calculation neatly illustrates the fact that the dynamics of the Goldstone bosons is governed by the symmetries of QCD.Comment: Contribution to the proceedings of MESON 2006 (Krakow

    New parametrization for the nuclear covariant energy density functional with point-coupling interaction

    Full text link
    A new parametrization PC-PK1 for the nuclear covariant energy density functional with nonlinear point-coupling interaction is proposed by fitting to observables for 60 selected spherical nuclei, including the binding energies, charge radii and empirical pairing gaps. The success of PC-PK1 is illustrated in its description for infinite nuclear matter and finite nuclei including the ground-state and low-lying excited states. Particularly, PC-PK1 improves the description for isospin dependence of binding energy along either the isotopic or the isotonic chains, which makes it more reliable for application in exotic nuclei. The predictive power of PC-PK1 is also illustrated for the nuclear low-lying excitation states in a five-dimensional collective Hamiltonian in which the parameters are determined by constrained calculations for triaxial shapes.Comment: 32 pages, 12 figures, 4 tables, accepted by Phys. Rev.

    Associated production of the charged Higgs boson and single top quark at the LHC

    Full text link
    The left-right twin Higgs(LRTH) model predicts the existence of the charged Higgs ϕ±\phi^{\pm}. In this paper, we study the production of the charged Higgs boson ϕ\phi^{-} with single top quark via the process bgtϕbg\to t\phi^{-} at the CERNCERN Large Hadron Collider(LHC). The numerical results show that the production cross section can reach the level of 10pb10 pb in the reasonable parameter space of the LRTH model. We expect that, as long as it is not too heavy, the possible signatures of the heavy charged Higgs boson ϕ\phi^{-} might be detected via the decay mode ϕtˉb\phi^{-}\to \bar{t}b at the LHC experiments.Comment: This paper has been withdrawn by the author(s) due to some mistakes in this pape
    corecore