56 research outputs found

    Atmospheric Propagation of Terahertz Radiation

    Get PDF

    Aridity-driven shift in biodiversity–soil multifunctionality relationships

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-01-07, accepted 2021-08-12, registration 2021-08-25, pub-electronic 2021-09-09, online 2021-09-09, collection 2021-12Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); doi: https://doi.org/10.13039/501100001809; Grant(s): 31770430Abstract: Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Diagenetic controls on reservoir quality of tight sandstone: A case study of the Upper Triassic Yanchang formation Chang 7 sandstones, Ordos Basin, China

    No full text
    Through a range of petrological techniques, the petrology, diagenesis, pore characteristics, and controlling factors on the regional variations of reservoir quality of the Chang 7 sandstones were studied. These sandstones, mainly arkoses, lithic arkoses, and feldspathic litharenites, were deposited in a delta front and turbidites in semi-deep to deep lacustrine. The detrital constituents were controlled by the provenance and sedimentary condition, which resulted in a spatially variable composition; e.g., high biotite and feldspar contents in the northeast (NE) of the study area, and high contents of rock fragments, especially dolomite, matrix, and quartz in the southwest (SW). Diagenesis includes intense mechanical compaction, cementation, and dissolution of unstable minerals. Diagenetic minerals which were derived internally include quartz, ankerite, ferrous calcite, albite, illite, kaolinite, and chlorite. Thus the original sandstone composition hadfirm control over the development and distribution of cement. Mechanical compaction and late-stage cementations contribute to the porosity loss of sandstones of Chang7 member. The dissolution porosity in major sandstone, slightly higher than primary porosity is principally dependent on the accessibility of acid fluid. The high content of plastic component facilitated the reduction of primary porosity and limited the mineral dissolution. The best reservoir sandstones are found in W, and partly from NE, M districts, with porosity are primary. The relatively high textural maturity of these sandstones reduces the impact of compaction on primary pores, and commonly existed chlorite rims limited the precipitation of pore filling quartz and carbonate cementation in late stage

    Construction of an enteral nutrition evaluation system for critically ill patients based on the Delphi method

    No full text
    Background: This study aimed to construct an enteral nutrition evaluation system for critically ill patients using the Delphi method to direct the formulation of enteral nutrition support strategies and reduce interruption to enteral feeding. Methods: We used domestic and foreign databases to obtain and analyze the literature and form “The Whole-Proceeding Enteral Nutrition Evaluation System for Critically Ill Patients.” The Delphi method was used to conduct two rounds of expert opinion consultation, combined with the suggestions from the research group to finalize the nutrition evaluation content of the system. Results: After two rounds of expert consultation, a nutrition evaluation system was formed around three dimensions: before the start, during, and after the end of nutritional support. The effective recovery rates of the two rounds of expert consultation were 90.0% (18/20) and 100.0% (18/18), respectively. Authority coefficients were 0.865 and 0.908, while Kendall coordination coefficients were 0.108 (P < 0.05) and 0.115 (P < 0.001), respectively. Finally, the full enteral nutrition evaluation system for critically ill patients was constructed based on the Delphi method, including three primary items and seven secondary and 28 tertiary indicators. Conclusion: The established “Whole-Proceeding Enteral Nutrition Evaluation System for Critically Ill Patients” has high consistency from expert opinions and reliability, which can provide a practical evaluation tool for the process of enteral nutrition for severe patients

    Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin

    No full text
    By comprehensive study of reservoir and source rock distribution, petrology and geochemistry, the tight oil and its exploration potential was analyzed in the Triassic Yanchang Formation, Ordos Basin. The Triassic Yanchang Formation is rich in low permeability reservoirs. The proved geological reserves of tight oil, with the permeability less than 2×10−3 μm2, is about two billion tons by now. The tight oil mainly occurs in tight sandstone reservoirs of Chang6-Chang8 oil-bearing members which are close to or interbedded with the oil shale layers, without long-distance migration. The large-scale gravity flow sandstone reservoirs of Chang7 and Chang6 oil-bearing members in the center of the lacustrine basin are particularly tight, with the permeability less than 0.3×10−3 μm2 in general. The tight oil in the Yanchang Formation features large scale in sand body complex, tight reservoir, complicated pore throat structure, high content of rigid components, abundant fractures and saturation, good crude property, low fluid pressure and low oil yield. The formation of large-scale superimposed tight oil reservoirs is controlled by the interbeded lithologic combination of extensive source rocks and reservoirs and the strong hydrocarbon generation and expulsion during geological history. This type of pools is an important potential resource for future oil exploration and development. Key words: tight oil, Yanchang Formation, Ordos Basin, potential resourc

    Diagenetic controls on reservoir quality of tight sandstone: A case study of the Upper Triassic Yanchang formation Chang 7 sandstones, Ordos Basin, China

    Get PDF
    Through a range of petrological techniques, the petrology, diagenesis, pore characteristics, and controlling factors on the regional variations of reservoir quality of the Chang 7 sandstones were studied. These sandstones, mainly arkoses, lithic arkoses, and feldspathic litharenites, were deposited in a delta front and turbidites in semi-deep to deep lacustrine. The detrital constituents were controlled by the provenance and sedimentary condition, which resulted in a spatially variable composition; e.g., high biotite and feldspar contents in the northeast (NE) of the study area, and high contents of rock fragments, especially dolomite, matrix, and quartz in the southwest (SW). Diagenesis includes intense mechanical compaction, cementation, and dissolution of unstable minerals. Diagenetic minerals which were derived internally include quartz, ankerite, ferrous calcite, albite, illite, kaolinite, and chlorite. Thus the original sandstone composition hadfirm control over the development and distribution of cement. Mechanical compaction and late-stage cementations contribute to the porosity loss of sandstones of Chang7 member. The dissolution porosity in major sandstone, slightly higher than primary porosity is principally dependent on the accessibility of acid fluid. The high content of plastic component facilitated the reduction of primary porosity and limited the mineral dissolution. The best reservoir sandstones are found in W, and partly from NE, M districts, with porosity are primary. The relatively high textural maturity of these sandstones reduces the impact of compaction on primary pores, and commonly existed chlorite rims limited the precipitation of pore filling quartz and carbonate cementation in late stage.A través de una gama de técnicas petrológicas se estudió la petrología, la diagénesis, las características de poro y los factores que controlan las variaciones regionales de la calidad del yacimiento de las areniscas Chang 7. Estas areniscas, principalmente arcosas, arcosas líticas y arenitas líticas feldespáticas, se depositaron en un frente deltáico mientras las turbiditas se depositaron en ambientes lacustres profundos y semi-profundos. Los componentes detríticos dependen de la procedencia y la condición sedimentaria, lo que resultó en una composición variable en el espacio; por ejemplo, altos contenidos de biotita y feldespato en el noreste (NE) del área de estudio, y altos contenidos de fragmentos de roca, especialmente dolomita, matriz y cuarzo en el suroeste (SW). La diagénesis incluye compactación mecánica intensa, cementación y disolución de minerales inestables. Los minerales diagenéticos que se derivaron internamente incluyen cuarzo, ankerita, calcita ferrosa, albita, illita, caolinita y clorita. Por lo tanto, la composición original de arenisca tenía un firme control sobre el desarrollo y la distribución del cemento. La compactación mecánica y las cementaciones de la última etapa contribuyen a la pérdida de porosidad de las areniscas del miembro Chang7. La porosidad de disolución en la piedra arenisca principal, ligeramente más alta que la porosidad primaria, depende principalmente de la accesibilidad del fluido ácido. El alto contenido de componentes plásticos facilitó la reducción de la porosidad primaria y limitó la disolución del mineral. Las mejores areniscas de yacimiento se encuentran en los distritos Occidental, y en parte de los distritos Noroeste y Medio, con niveles primarios de porosidad. La madurez textural relativamente alta de estas areniscas reduce el impacto de la compactación en los poros primarios, y los bordes de clorito comúnmente existentes limitaron la precipitación del cuarzo de llenado de poros y la cementación de carbonato en la etapa tardía

    U–Pb Dating and Hf Isotopes Analysis of Detrital Zircons of the Shanxi Formation in the Otuokeqi Area, Northwestern Ordos Basin

    No full text
    The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The εHft value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model TDM2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny

    Formation patterns of Chang 9 oil reservoir in Triassic Yanchang Formation, Ordos Basin, NW China

    No full text
    Abstract: Based on analysis of main controlling factors of Chang 9, the source rock, driving force of migration, migration and accumulation modes, reservoir forming stages and model and enrichment law of Chang 9 reservoir were examined. The study showed that the oil of Chang 9 reservoir in the Jiyuan and Longdong (Eastern Gansu) areas came primarily from the source rock of Chang 7 Member, but the oil of Chang 9 reservoir in the Zhidan area came primarily from the source rock of Chang 9 Member. There developed lithologic-structural oil reservoirs in Gufengzhuang-Mahuangshan area in northwest Jiyuan, structural-lithologic oil reservoirs in east Jiyuan, and lithologic reservoirs in Huachi–Qingcheng area and Zhidan area. The overpressure of Chang 7 Member was the driving force of oil migration. The burial history showed that Chang 9 Member experienced two stages of reservoir forming, the reservoir formed in the Late Jurassic was smaller in charging scope and scale, and the Early Cretaceous was the period when the source rock generated oil and gas massively and the Chang 9 reservoir came into being. Along with the tectonic movements, Chang 7 bottom structure turned from high in the west and lower in the East in the sedimentary stage to high in the east and lower in the west in the hydrocarbon accumulation stage and at last to gentle western-leaning monoclinal structure at present. In Early Cretaceous, the Chang 7 bottom structure was the lowest in the west of Huanxian-Huachi-Wuqi-Dingbian areas, so the oil migrated laterally towards the higher positions around after entering the reservoir. In the main reservoir forming period, Chang 7 bottom had an ancient anticline in Mahuangshan-Hongjingzi area of west Jiyuan, controlling the oil reservoir distribution in west Jiyuan. Key words: Ordos Basin, Triassic Yanchang Formation, Chang 9 Member, source rock, driving force of migration, migration and accumulation mode, reservoir accumulation mode, enrichment la
    corecore