47 research outputs found

    Mask Propagation for Efficient Video Semantic Segmentation

    Full text link
    Video Semantic Segmentation (VSS) involves assigning a semantic label to each pixel in a video sequence. Prior work in this field has demonstrated promising results by extending image semantic segmentation models to exploit temporal relationships across video frames; however, these approaches often incur significant computational costs. In this paper, we propose an efficient mask propagation framework for VSS, called MPVSS. Our approach first employs a strong query-based image segmentor on sparse key frames to generate accurate binary masks and class predictions. We then design a flow estimation module utilizing the learned queries to generate a set of segment-aware flow maps, each associated with a mask prediction from the key frame. Finally, the mask-flow pairs are warped to serve as the mask predictions for the non-key frames. By reusing predictions from key frames, we circumvent the need to process a large volume of video frames individually with resource-intensive segmentors, alleviating temporal redundancy and significantly reducing computational costs. Extensive experiments on VSPW and Cityscapes demonstrate that our mask propagation framework achieves SOTA accuracy and efficiency trade-offs. For instance, our best model with Swin-L backbone outperforms the SOTA MRCFA using MiT-B5 by 4.0% mIoU, requiring only 26% FLOPs on the VSPW dataset. Moreover, our framework reduces up to 4x FLOPs compared to the per-frame Mask2Former baseline with only up to 2% mIoU degradation on the Cityscapes validation set. Code is available at https://github.com/ziplab/MPVSS.Comment: NeurIPS 202

    Transcriptome and UPLC-MS/MS reveal mechanisms of amino acid biosynthesis in sweet orange ‘Newhall’ after different rootstocks grafting

    Get PDF
    Sweet orange ‘Newhall’ (C. sinensis) is a popular fruit in high demand all over the world. Its peel and pulp are rich in a variety of nutrients and are widely used in catering, medicine, food and other industries. Grafting is commonly practiced in citrus production. Different rootstock types directly affect the fruit quality and nutritional flavor of citrus. However, the studies on citrus metabolites by grafting with different rootstocks are very limited, especially for amino acids (AAs). The preliminary test showed that there were significant differences in total amino acid content of two rootstocks (Poncirus trifoliata (CT) and C. junos Siebold ex Tanaka (CJ)) after grafting, and total amino acid content in the peel was higher than flesh. However, the molecular mechanism affecting amino acid differential accumulation remains unclear. Therefore, this study selected peel as the experimental material to reveal the amino acid components and differential accumulation mechanism of sweet orange ‘Newhall’ grafted with different rootstocks through combined transcriptome and metabolome analysis. Metabolome analysis identified 110 amino acids (AAs) and their derivatives in sweet orange ‘Newhall’ peels, with L-valine being the most abundant. L-asparagine was observed to be affected by both developmental periods and rootstock grafting. Weighted gene co-expression network analysis (WGCNA) combined with Redundancy Analysis (RDA) revealed eight hub structural genes and 41 transcription factors (TFs) that significantly influenced amino acid biosynthesis in sweet orange ‘Newhall’ peels. Our findings further highlight the significance of rootstock selection in enhancing the nutritional value of citrus fruits and might contribute to the development of functional citrus foods and nutritional amino acid supplements

    Continental-scale niche differentiation of dominant topsoil archaea in drylands

    Get PDF
    15 págs.- 6 figuras.- 75 referenciasArchaea represent a diverse group of microorganisms often associated with extreme environments. However, an integrated understanding of biogeographical patterns of the specialist Haloarchaea and the potential generalist ammonia-oxidizing archaea (AOA) across large-scale environmental gradients remains limited. We hypothesize that niche differentiation determines their distinct distributions along environmental gradients. To test the hypothesis, we use a continental-scale research network including 173 dryland sites across northern China. Our results demonstrate that Haloarchaea and AOA dominate topsoil archaeal communities. As hypothesized, Haloarchaea and AOA show strong niche differentiation associated with two ecosystem types mainly found in China's drylands (i.e. deserts vs. grasslands), and they differ in the degree of habitat specialization. The relative abundance and richness of Haloarchaea are higher in deserts due to specialization to relatively high soil salinity and extreme climates, while those of AOA are greater in grassland soils. Our results further indicate a divergence in ecological processes underlying the segregated distributions of Haloarchaea and AOA. Haloarchaea are governed primarily by environmental-based processes while the more generalist AOA are assembled mostly via spatial-based processes. Our findings add to existing knowledge of large-scale biogeography of topsoil archaea, advancing our predictive understanding on changes in topsoil archaeal communities in a drier world.This research was supported by the National Natural Science Foundation of China (Nos. 31700463 and 31770430), National Scientific and Technological Program on Basic Resources Investigation (No. 2019FY102002), Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (No. 2019HJ2096001006), the Top Leading Talents in Gansu Province to J.D. and the Innovation Base Project of Gansu Province (No. 20190323). J.C.S. was supported by the U.S. Department of Energy-BER program, as part of an Early Career Award to J.C.S. at the Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the US Department of Energy under Contract DEAC05-76RL01830. M.D.-B. acknowledges support from the Spanish Ministry of Science and Innovation for the I +-D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D.-B. is also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformacion Economica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014–2020 Objetivo tematico ‘01 - Refuerzo de la investigacion, el desarrollo tecnologico y la innovacion’) associated with the research project P20_00879 (ANDABIOMA).Peer reviewe

    Aridity-driven shift in biodiversity–soil multifunctionality relationships

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-01-07, accepted 2021-08-12, registration 2021-08-25, pub-electronic 2021-09-09, online 2021-09-09, collection 2021-12Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); doi: https://doi.org/10.13039/501100001809; Grant(s): 31770430Abstract: Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification

    Deep Active Learning for Computer Vision Tasks: Methodologies, Applications, and Challenges

    No full text
    Active learning is a label-efficient machine learning method that actively selects the most valuable unlabeled samples to annotate. Active learning focuses on achieving the best possible performance while using as few, high-quality sample annotations as possible. Recently, active learning achieved promotion combined with deep learning-based methods, which are named deep active learning methods in this paper. Deep active learning plays a crucial role in computer vision tasks, especially in label-insensitive scenarios, such as hard-to-label tasks (medical images analysis) and time-consuming tasks (autonomous driving). However, deep active learning still has some challenges, such as unstable performance and dirty data, which are future research trends. Compared with other reviews on deep active learning, our work introduced the deep active learning from computer vision-related methodologies and corresponding applications. The expected audience of this vision-friendly survey are researchers who are working in computer vision but willing to utilize deep active learning methods to solve vision problems. Specifically, this review systematically focuses on the details of methods, applications, and challenges in vision tasks, and we also introduce the classic theories, strategies, and scenarios of active learning in brief

    Preparation of core-shell Al2O3@CIPs and its anti-oxidation properties and microwave absorbing performance

    No full text
    Core-shell Al2O3@carbonyl iron powders (CIPs) were prepared by ball-milling-in-situ oxidation method. The phase composition, mass change and micromorphology of Al2O3@CIPs were analyzed by X-ray diffraction, thermogravimetric analyzer and scanning electron microscopy. The effects of various oxidation temperature on electromagnetic properties and absorbing performance of Al2O3@CIPs were studied. The results show that, as the oxidation temperature increases, the shell of Al2O3@CIPs is damaged to some extent and accompanied by the formation of iron oxides, its permittivity rises first and then declines, while permeability shows a downward trend. Compared with CIPs, Al2O3@CIPs obtained by in-situ oxidation at 400℃ achieve excellent electromagnetic wave absorption performance.The real part of the permittivity is about 15, and the imaginary part is 2.8-4.3. The effective absorption band (< -10 dB) of 3.4 GHz can be obtained under the thickness of 1.8 mm in the X-band, while the Al2O3@CIPs obtained by in-situ oxidation at 450℃ achieve the maximum reflection loss of -30 dB at 11.1 GHz

    Integration of power-to-hydrogen in day-ahead security-constrained unit commitment with high wind penetration

    No full text
    Abstract The increasing integration of variable wind generation has aggravated the imbalance between electricity supply and demand. Power-to-hydrogen (P2H) is a promising solution to balance supply and demand in a variable power grid, in which excess wind power is converted into hydrogen via electrolysis and stored for later use. In this study, an energy hub (EH) with both a P2H facility (electrolyzer) and a gas-to-power (G2P) facility (hydrogen gas turbine) is proposed to accommodate a high penetration of wind power. The EH is modeled and integrated into a security-constrained unit commitment (SCUC) problem, and this optimization problem is solved by a mixed-integer linear programming (MILP) method with the Benders decomposition technique. Case studies are presented to validate the proposed model and elaborate on the technological potential of integrating P2H into a power system with a high level of wind penetration (HWP)
    corecore