3,555 research outputs found

    On the existence of exotic and non-exotic multiquark meson states

    Get PDF
    To obtain an exact solution of a four-body system containing two quarks and two antiquarks interacting through two-body terms is a cumbersome task that has been tackled with more or less success during the last decades. We present an exact method for the study of four-quark systems based on the hyperspherical harmonics formalism that allows us to solve it without resorting to further approximations, like for instance the existence of diquark components. We apply it to systems containing two heavy and two light quarks using different quark-quark potentials. While QQnˉnˉQQ\bar n \bar n states may be stable in nature, the stability of QQˉnnˉQ\bar Qn \bar n states would imply the existence of quark correlations not taken into account by simple quark dynamical models.Comment: 3 pages. Contribution to the 20th European Conference on Few-Body Problems in Physics, Pisa, Italy. To be published in Few-Body system

    Prediction of College Students’ Employment Rate Based on Gray System

    Get PDF
    College students’ employment is affected by many factors such as economy and policy, which makes the prediction error of college students’ employment rate large. In order to solve this problem, a prediction method of college students’ employment rate based on the gray system is designed. Firstly, it analyzes the current research status of college students’ employment rate prediction, finds out the causes of errors, then collects the historical data of college students’ employment rate, fits the change characteristics of college students’ employment rate through the gray system, and establishes the prediction model of college students’ employment rate. Finally, the simulation test is realized by using the employment rate data of college students. /e results show that the gray system can reflect the change characteristics of college students’ employment rate and obtain high-precision college students’ employment rate prediction results. /e prediction error is less than that of other college students’ employment rate prediction methods. We achieved an average accuracy of 95.22% as compared to 92.3% and 87.7% of other proposed systems. /e prediction results can provide some reference information for the university employment management department

    Multiplexed SNP Typing of Ancient DNA Clarifies the Origin of Andaman mtDNA Haplogroups amongst South Asian Tribal Populations

    Get PDF
    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups ∟30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity

    Minisequencing mitochondrial DNA pathogenic mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA) diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations.</p> <p>Methods</p> <p>We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease.</p> <p>Results</p> <p>We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain) patients carrying haplogroup J lineages (Fisher's Exact test, <it>P</it>-value < 0.01). The assay performs well in mixture experiments of wild:mutant DNAs that emulate heteroplasmic conditions in mtDNA diseases.</p> <p>Conclusion</p> <p>We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories. </p

    Glial sulfatides and neuronal complex gangliosides are functionally interdependent in maintaining myelinating axon integrity

    Get PDF
    Sulfatides and gangliosides are raft-associated glycolipids essential for maintaining myelinated nerve integrity. Mice deficient in sulfatide (cerebroside sulfotransferase knockout, CST-/- ) or complex gangliosides (β-1,4-N-acetylegalactosaminyltransferase1 knockout, GalNAc-T-/- ) display prominent disorganization of proteins at the node of Ranvier (NoR) in early life, and age-dependent neurodegeneration. Loss of neuronal rather than glial complex gangliosides underpins the GalNAc-T-/- phenotype, as shown by neuron or glial-specific rescue, whereas sulfatide is principally expressed and functional in glial membranes. The similarities in NoR phenotype of CST-/- , GalNAc-T-/- and axo-glial protein deficient mice suggests these glycolipids stabilise membrane proteins including neurofascin155 (NF155) and myelin-associated glycoprotein (MAG) at axo-glial junctions. To assess the functional interactions between sulfatide and gangliosides, CST-/- and GalNAc-T-/- genotypes were interbred. CST-/- x GalNAc-T-/- mice develop normally to P10, but all die between P20-P25, coinciding with peak myelination. Ultrastructural, immunohistological and biochemical analysis of either sex reveals widespread axonal degeneration and disruption to the axo-glial junction at the NoR. In addition to sulfatide-dependent loss of NF155, CST-/-x GalNAc-T-/- mice exhibited a major reduction in MAG protein levels in CNS myelin, compared to wild type and single lipid deficient mice. The CST-/- x GalNAc-T-/- phenotype was fully restored to that of CST-/- mice by neuron-specific expression of complex gangliosides, but not by their glial-specific expression nor by the global expression of a-series gangliosides. These data indicate that sulfatide and complex b-series gangliosides on the glial and neuronal membranes respectively act in concert to promote NF155 and MAG in maintaining the stable axo-glial interactions essential for normal nerve function.SIGNIFICANCE STATEMENTSulfatides and complex gangliosides are membrane glycolipids with important roles in maintaining nervous system integrity. Node of Ranvier maintenance in particular requires stable compartmentalisation of multiple membrane proteins. The axo-glial adhesion molecules neurofascin 155 and myelin-associated glycoprotein require membrane microdomains containing either sulfatides or complex gangliosides to localise and function effectively. The co-operative roles of these microdomains and associated proteins are unknown. Here we show vital interdependent roles for sulfatides and complex gangliosides as double (but not single) deficiency causes a rapidly lethal phenotype in early age. These findings suggests that sulfatides and complex gangliosides on opposing axo-glial membranes are responsible for essential tethering of the axo-glial junction proteins, neurofascin155 and myelin-associated glycoprotein that interact to maintain the nodal complex

    Epstein-Barr virus-encoded EBNA1 enhances RNA polymerase III-dependent EBER expression through induction of EBER-associated cellular transcription factors

    Get PDF
    Background Epstein-Barr Virus (EBV)-encoded RNAs (EBERs) are non-polyadenylated RNA molecules transcribed from the EBV genome by RNA polymerase III (pol III). EBERs are the most abundant viral latent gene products, although the precise mechanisms by which EBV is able to achieve such high levels of EBER expression are not fully understood. Previously EBV has been demonstrated to induce transcription factors associated with EBER expression, including pol III transcription factors and ATF-2. We have recently demonstrated that EBV-encoded nuclear antigen-1 (EBNA1) induces cellular transcription factors, and given these findings, we investigated the role of EBNA1 in induction of EBER-associated transcription factors. Results Our data confirm that in epithelial cells EBNA1 can enhance cellular pol III transcription. Transient expression of EBNA1 in Ad/AH cells stably expressing the EBERs led to induction of both EBER1 and EBER2 and conversely, expression of a dominant negative EBNA1 led to reduced EBER expression in EBV-infected Ad/AH cells. EBNA1 can induce transcription factors used by EBER genes, including TFIIIC, ATF-2 and c-Myc. A variant chromatin precipitation procedure showed that EBNA1 is associated with the promoters of these genes but not with the promoters of pol III-transcribed genes, including the EBERs themselves. Using shRNA knock-down, we confirm the significance of both ATF-2 and c-Myc in EBER expression. Further, functional induction of a c-Myc fusion protein led to increased EBER expression, providing c-Myc binding sites upstream of EBER1 were intact. In vivo studies confirm elevated levels of the 102 kD subunit of TFIIIC in the tumour cells of EBV-positive nasopharyngeal carcinoma biopsies. Conclusions Our findings reveal that EBNA1 is able to enhance EBER expression through induction of cellular transcription factors and add to the repertoire of EBNA1's transcription-regulatory properties

    Southeast Asian diversity: first insights into the complex mtDNA structure of Laos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vast migrations and subsequent assimilation processes have shaped the genetic composition of Southeast Asia, an area of close contact between several major ethnic groups. To better characterize the genetic variation of this region, we analyzed the entire mtDNA control region of 214 unrelated donors from Laos according to highest forensic quality standards. To detail the phylogeny, we inspected selected SNPs from the mtDNA coding region. For <it>a posteriori </it>data quality control, quasi-median network constructions and autosomal STR typing were performed. In order to describe the mtDNA setup of Laos more thoroughly, the data were subjected to population genetic comparisons with 16 East Asian groups.</p> <p>Results</p> <p>The Laos sample exhibited ample mtDNA diversity, reflecting the huge number of ethnic groups listed. We found several new, so far undescribed mtDNA lineages in this dataset and surrounding populations. The Laos population was characteristic in terms of haplotype composition and genetic structure, however, genetic comparisons with other Southeast Asian populations revealed limited, but significant genetic differentiation. Notable differences in the maternal relationship to the major indigenous Southeast Asian ethnolinguistic groups were detected.</p> <p>Conclusions</p> <p>In this study, we portray the great mtDNA variety of Laos for the first time. Our findings will contribute to clarify the migration history of the region. They encourage setting up regional and subpopulation databases, especially for forensic applications. The Laotian sequences will be incorporated into the collaborative EMPOP mtDNA database <url>http://www.empop.org</url> upon publication and will be available as the first mtDNA reference data for this country.</p
    • …
    corecore