654 research outputs found

    Update on the Juncture Flow PIV Results and Future Plans

    Get PDF
    A novel, embedded, 2D Particle Image Velocimetry system has been developed and implemented to obtain off-body velocity measurements in the junction of an 8% wing-body configuration in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel. Although the initial purpose for implementing the system during this test was to evaluate system performance and identify potential risks, a considerable amount of data were obtained in the wing-fuselage junction near the trailing edge at a Reynolds Number of 2.4 Million and angle of attack of 5 degrees. In addition to providing notable efficiencies with regard to image acquisition and test operations, the PIV system captured unique details of the flow separation to complement the extensive suite of measurement techniques applied during the test. Instantaneous PIV vector fields reveal that the flow separation is not stationary but rather highly dynamic. Mean flow statistics calculated from the PIV measurements highlight where reverse flow and Reynolds stresses are concentrated in the separated region and agree well with results from the embedded Laser Doppler Velocimeter system and Computational Fluid Dynamics. The comparisons and ional insight gained during this effort will help guide system improvements for the upcoming entry in 2020

    Time Resolved Stereo Particle Image Velocimetry Measurements of the Instabilities Downstream of a Backward-Facing Step in a Swept-Wing Boundary Layer

    Get PDF
    Time-resolved particle image velocimetry (TRPIV) measurements are performed down-stream of a swept backward-facing step, with a height of 49% of the boundary-layer thickness. The results agree well qualitatively with previously reported hotwire measurements, though the amplitudes of the fluctuating components measured using TRPIV are higher. Nonetheless, the low-amplitude instabilities in the flow are fairly well resolved using TR- PIV. Proper orthogonal decomposition is used to study the development of the traveling cross flow and Tollmien-Schlichting (TS) instabilities downstream of the step and to study how they interact to form the large velocity spikes that ultimately lead to transition. A secondary mode within the traveling cross flow frequency band develops with a wavelength close to that of the stationary cross flow instability, so that at a certain point in the phase, it causes an increase in the spanwise modulation initially caused by the stationary cross flow mode. This increased modulation leads to an increase in the amplitude of the TS mode, which, itself, is highly modulated through interactions with the stationary cross flow. When the traveling cross flow and TS modes align in time and space, the large velocity spikes occur. Thus, these three instabilities, which are individually of low amplitude when the spikes start to occur (U'rms/Ue <0.03), interact and combine to cause a large flow disturbance that eventually leads to transition

    Active Control of Separation From the Flap of a Supercritical Airfoil

    Get PDF
    Zero-mass-flux periodic excitation was applied at several regions on a simplified high-lift system to delay the occurrence of flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approximately equal to 10) and low frequency amplitude modulation (F(+) sub AM approximately equal to 1) of the high frequency excitation were used for control. It was noted that the same performance gains were obtained with amplitude modulation and required only 30% of the momentum input required by pure sine excitation

    Active Flow Control at Low Reynolds Numbers on a NACA 0015 Airfoil

    Get PDF
    Results from a low Reynolds number wind tunnel experiment on a NACA 0015 airfoil with a 30% chord trailing edge flap tested at deflection angles of 0, 20, and 40 are presented and discussed. Zero net mass flux periodic excitation was applied at the ap shoulder to control flow separation for flap deflections larger than 0. The primary objective of the experiment was to compare force and moment data obtained from integrating surface pressures to data obtained from a 5-component strain-gage balance in preparation for additional three-dimensional testing of the model. To achieve this objective, active flow control is applied at an angle of attack of 6 where published results indicate that oscillatory momentum coefficients exceeding 1% are required to delay separation. Periodic excitation with an oscillatory momentum coefficient of 1.5% and a reduced frequency of 0.71 caused a significant delay of separation on the airfoil with a flap deflection of 20. Higher momentum coefficients at the same reduced frequency were required to achieve a similar level of flow attachment on the airfoil with a flap deflection of 40. There was a favorable comparison between the balance and integrated pressure force and moment results

    Experimental Investigation of a 2D Supercritical Circulation-Control Airfoil Using Particle Image Velocimetry

    Get PDF
    Recent efforts in extreme short takeoff and landing aircraft configurations have renewed the interest in circulation control wing design and optimization. The key to accurately designing and optimizing these configurations rests in the modeling of the complex physics of these flows. This paper will highlight the physics of the stagnation and separation regions on two typical circulation control airfoil sections

    Active Management of Flap-Edge Trailing Vortices

    Get PDF
    The vortex hazard produced by large airliners and increasingly larger airliners entering service, combined with projected rapid increases in the demand for air transportation, is expected to act as a major impediment to increased air traffic capacity. Significant reduction in the vortex hazard is possible, however, by employing active vortex alleviation techniques that reduce the wake severity by dynamically modifying its vortex characteristics, providing that the techniques do not degrade performance or compromise safety and ride quality. With this as background, a series of experiments were performed, initially at NASA Langley Research Center and subsequently at the Berlin University of Technology in collaboration with the German Aerospace Center. The investigations demonstrated the basic mechanism for managing trailing vortices using retrofitted devices that are decoupled from conventional control surfaces. The basic premise for managing vortices advanced here is rooted in the erstwhile forgotten hypothesis of Albert Betz, as extended and verified ingeniously by Coleman duPont Donaldson and his collaborators. Using these devices, vortices may be perturbed at arbitrarily long wavelengths down to wavelengths less than a typical airliner wingspan and the oscillatory loads on the wings, and hence the vehicle, are small. Significant flexibility in the specific device has been demonstrated using local passive and active separation control as well as local circulation control via Gurney flaps. The method is now in a position to be tested in a wind tunnel with a longer test section on a scaled airliner configuration. Alternatively, the method can be tested directly in a towing tank, on a model aircraft, a light aircraft or a full-scale airliner. The authors believed that this method will have significant appeal from an industry perspective due to its retrofit potential with little to no impact on cruise (devices tucked away in the cove or retracted); low operating power requirements; small lift oscillations when deployed in a time-dependent manner; and significant flexibility with respect to the specific devices selected

    Guest editorial: Advances in RFID technology

    Get PDF

    Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10

    Get PDF
    The plant hormone jasmonate (JA) activates gene expression by promoting ubiquitin-dependent degradation of JAZ transcriptional repressor proteins. A key feature of all JAZ proteins is the highly conserved Jas motif, which mediates both JAZ degradation and JAZ binding to the transcription factor MYC2. Rapid expression of JAZ genes in response to JA is thought to attenuate JA responses, but little is known about the mechanisms by which newly synthesized JAZ proteins exert repression in the presence of the hormone. Here, we show that desensitization to JA is mediated by an alternative splice variant (JAZ10.4) of JAZ10 that lacks the Jas motif. Unbiased protein-protein interaction screens identified three related bHLH transcription factors (MYC2, MYC3, and MYC4) and the co-repressor NINJA as JAZ10.4-binding partners. We show that the N-terminal region of JAZ10.4 contains a cryptic MYC2-binding site that resembles the Jas motif, and that the ZIM motif of JAZ10.4 functions as a transferable repressor domain whose activity is associated with recruitment of NINJA. Functional studies showed that expression of JAZ10.4 from the native JAZ10 promoter complemented the JA-hypersensitive phenotype of a jaz10 mutant. Moreover, treatment of these complemented lines with JA resulted in rapid accumulation of JAZ10.4 protein. Our results provide an explanation for how the unique domain architecture of JAZ10.4 links transcription factors to a co-repressor complex, and suggest how JA-induced transcription and alternative splicing of JAZ10 pre-mRNA creates a regulatory circuit to attenuate JA responses.Fil: Moreno, Javier Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina. Michigan State University; Estados UnidosFil: Shyu, Christine. Michigan State University; Estados UnidosFil: Campos, Marcelo L.. Michigan State University; Estados UnidosFil: Patel, Lalita C.. Michigan State University; Estados UnidosFil: Chung, Hoo Sun. Michigan State University; Estados UnidosFil: Yao, Jian. Michigan State University; Estados UnidosFil: He, Sheng Hang. Michigan State University; Estados UnidosFil: Howe, Gregg A.. Michigan State University; Estados Unido

    Experimental Investigation of Rotorcraft Outwash in Ground Effect

    Get PDF
    The wake characteristics of a rotorcraft are affected by the proximity of a rotor to the ground surface, especially during hover. Ground effect is encountered when the rotor disk is within a distance of a few rotor radii above the ground surface and results in an increase in thrust for a given power relative to that same power condition with the rotor out of ground effect. Although this phenomenon has been highly documented and observed since the beginning of the helicopter age, there is still a relatively little amount of flow-field data existing to help understand its features. Joint Army and NASA testing was conducted at NASA Langley Research Center using a powered rotorcraft model in hover at various rotor heights and thrust conditions in order to contribute to the complete outwash data set. The measured data included outwash velocities and directions, rotor loads, fuselage loads, and ground pressures. The researchers observed a linear relationship between rotor height and percent download on the fuselage, peak mean outwash velocities occurring at radial stations between 1.7 and 1.8 r/R regardless of rotor height, and the measurement azimuthal dependence of the outwash profile for a model incorporating a fuselage. Comparisons to phase-locked PIV data showed similar contours but a more contracted wake boundary for the PIV data. This paper describes the test setup and presents some of the averaged results

    Development of a Large Field-of-View PIV System for Rotorcraft Testing in the 14- x 22-Foot Subsonic Tunnel

    Get PDF
    A Large Field-of-View Particle Image Velocimetry (LFPIV) system has been developed for rotor wake diagnostics in the 14-by 22-Foot Subsonic Tunnel. The system has been used to measure three components of velocity in a plane as large as 1.524 meters by 0.914 meters in both forward flight and hover tests. Overall, the system performance has exceeded design expectations in terms of accuracy and efficiency. Measurements synchronized with the rotor position during forward flight and hover tests have shown that the system is able to capture the complex interaction of the body and rotor wakes as well as basic details of the blade tip vortex at several wake ages. Measurements obtained with traditional techniques such as multi-hole pressure probes, Laser Doppler Velocimetry (LDV), and 2D Particle Image Velocimetry (PIV) show good agreement with LFPIV measurements
    corecore