157 research outputs found

    North Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges

    Get PDF
    Perfluorooctane sulfonate (PFOS) is an aliphatic fluorinated compound with eight carbon atoms that is extremely persistent in the environment and can adversely affect human and ecological health. The stability, low reactivity, and high water solubility of PFOS combined with the North American phase-out in production around the year 2000, make it a potentially useful new tracer for ocean circulation. Here we characterize processes affecting the lifetime and accumulation of PFOS in the North Atlantic Ocean and transport to sensitive Arctic regions by developing a 3-D simulation within the MITgcm. The model captures variability in measurements across biogeographical provinces (R2 = 0.90, p=0.01). In 2015, the North Atlantic PFOS reservoir was equivalent to 60% of cumulative inputs from the North American and European continents (1400 Mg). Cumulative inputs to the Arctic accounted for 30% of continental discharges, while the remaining 10% was transported to the tropical Atlantic and other regions. PFOS concentrations declined rapidly after 2002 in the surface mixed-layer (half-life: 1-2 years) but are still increasing below 1000 m depth. During peak production years (1980-2000), plumes of PFOS enriched seawater were transported to the Subarctic in energetic surface ocean currents. However, Atlantic Meridional Overturning Circulation (AMOC) and deep ocean transport returned a substantial fraction of this northward transport (20%, 530 Mg) to southern latitudes and reduced cumulative inputs to the Arctic (730 Mg) by 70%. Weakened AMOC due to climate change is thus likely to increase the magnitude of persistent bioaccumulative pollutants entering the Arctic Ocean

    Global Exponential Stability of Delayed Periodic Dynamical Systems

    Full text link
    In this paper, we discuss delayed periodic dynamical systems, compare capability of criteria of global exponential stability in terms of various LpL^{p} (1≀p<∞1\le p<\infty) norms. A general approach to investigate global exponential stability in terms of various LpL^{p} (1≀p<∞1\le p<\infty) norms is given. Sufficient conditions ensuring global exponential stability are given, too. Comparisons of various stability criteria are given. More importantly, it is pointed out that sufficient conditions in terms of L1L^{1} norm are enough and easy to implement in practice

    A high-resolution marine mercury model MITgcm-ECCO2-Hg with online biogeochemistry

    Get PDF
    Mercury (Hg) is a global persistent contaminant. Modeling studies are useful means of synthesizing a current understanding of the Hg cycle. Previous studies mainly use coarse-resolution models, which makes it impossible to analyze the role of turbulence in the Hg cycle and inaccurately describes the transport of kinetic energy. Furthermore, all of them are coupled with offline biogeochemistry, and therefore they cannot respond to short-term variability in oceanic Hg concentration. In our approach, we utilize a high-resolution ocean model (MITgcm-ECCO2, referred to as “high-resolution-MITgcm”) coupled with the concurrent simulation of biogeochemistry processes from the Darwin Project (referred to as “online”). This integration enables us to comprehensively simulate the global biogeochemical cycle of Hg with a horizontal resolution of 1/5∘. The finer portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes demonstrate the effects of turbulence that are neglected in previous models. Ecological events such as algal blooms can cause a sudden enhancement of phytoplankton biomass and chlorophyll concentrations, which can also result in a dramatic change in particle-bound Hg (HgaqP) sinking flux simultaneously in our simulation. In the global estuary region, including riverine Hg input in the high-resolution model allows us to reveal the outward spread of Hg in an eddy shape driven by fine-scale ocean currents. With faster current velocities and diffusion rates, our model captures the transport and mixing of Hg from river discharge in a more accurate and detailed way and improves our understanding of Hg cycle in the ocean.</p

    Modelling the mercury stable isotope distribution of Earth surface reservoirs: Implications for global Hg cycling

    Get PDF
    Mercury (Hg) stable isotopes are useful to understand Hg biogeochemical cycling because physical, chemical and biological processes cause characteristic Hg isotope mass-dependent (MDF) and mass-independent (MIF) fractionation. Here, source Hg isotope signatures and process-based isotope fractionation factors are integrated into a fully coupled, global atmospheric-terrestrial-oceanic box model of MDF (delta Hg-202), odd-MIF (Delta Hg-199) and even-MIF (Delta Hg-200). Using this bottom-up approach, we find that the simulated Hg isotope compositions are inconsistent with the observations. We then fit the Hg isotope enrichment factors for MDF, odd-MIF and even-MIF to observational Hg isotope constraints. The MDF model suggests that atmospheric Hg-0 photo-oxidation should enrich heavy Hg isotopes in the reactant Hg-0, in contrast to the experimental observations of Hg-0 photo-oxidation by Br. The fitted enrichment factor of terrestrial Hg-0 emission in the odd-MIF model (5 parts per thousand) is likely biased high, suggesting that the terrestrial Hg-0 emission flux (160 Mg yr(-1)) used in our standard model is underestimated. In the even-MIF model, we find that a small positive atmospheric Hg-0 photo-oxidation enrichment factor (0.22 parts per thousand) along with enhanced atmospheric Hg-II photo-reduction and atmospheric Hg-0 dry deposition (foliar uptake) fluxes to the terrestrial reservoir are needed to match Delta Hg-200 observations. Marine Hg isotope measurements are needed to further expand the use of Hg isotopes in understanding global Hg cycling. (C) 2018 Elsevier Ltd. All rights reserved

    Simultaneous determination of multiple components in rat plasma by UHPLC-sMRM for pharmacokinetic studies after oral administration of Qingjin Yiqi Granules

    Get PDF
    As a Traditional Chinese Medicine prescription, Qingjin Yiqi Granules (QJYQ) provides an effective treatment for patients recovering from COVID-19. However, the pharmacokinetics characteristics of the main components of QJYQ in vivo are still unknown. An efficacious ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed and validated for the simultaneous determination of 33 components in rat plasma after oral administration of QJYQ. The plasma samples were precipitated with 400 ”L methanol/acetonitrile (1/1, v/v) and analyzed in scheduled multiple reaction monitoring mode. The linear relationship of the 33 components was good (r &gt; 0.9928). The lower limit of quantification for 33 components ranged from 0.4–60.5 ng/mL. The average recoveries and matrix effects of the analytes ranged from 72.9% to 115.0% with RSD of 1.4%–15.0%. All inter-day and intra-day RSDs were within 15.0%. After oral administration (3.15 g/kg), the validated approach was effectively applied to the pharmacokinetics of main components of QJYQ. Finally, fifteen main constituents of QJYQ with large plasma exposure were obtained, including baicalin, wogonoside, wogonin, apigenin-7-O-glucuronide, verbenalin, isoferulic acid, hesperidin, liquiritin, harpagide, protocatechuic acid, p-Coumaric acid, ferulic acid, sinapic acid, liquiritin apioside and glycyrrhizic acid. The present research lays a foundation for clarifying the therapeutic material basis of QJYQ and provides a reference for further scientific research and clinical application of QJYQ

    Strategies of high efficiency water usage promoted by microbial remediation in coal mining areas of western China

    Get PDF
    The fragile ecological environment in the western coal mining areas of China, compounded by intensive mining activities, has led to water and soil erosion, soil degradation, and damaged root systems. With a low plant water use efficiency, the ecological restoration becomes challenging, making the improvement of water use efficiency a key aspect in the ecological restoration or reconstruction of western mining areas. Soil water is a critical factor limiting the ecological restoration of arid and semi-arid coal mining areas, as it connects atmospheric water, surface water, groundwater, and vegetation growth, serving as an important carrier for water circulation and nutrient transport. Efficient and rational utilization of soil water is crucial to the success of ecological restoration. Therefore, investigating plant root water utilization strategies plays a significant role in the ecological restoration of western coal mining areas. This paper analyzes the main research methods of plant water use at home and abroad, compares the advantages and disadvantages of different methods, and reviews the corresponding research progress. In the damaged ecological environments of arid and semi-arid coal mining areas, the application of plant-microbe combined microbial remediation technology can improve plant water use efficiency and enhance plant water use strategies. At the same time, the microbial inoculation reduces the proportion of water absorption by plants from shallow soil layers, effectively increasing the absorption and utilization of water from deep soil layers by plants, thereby enhancing plant water use efficiency. This enables the inoculated plants to exhibit a higher ecological adaptability in the arid and semi-arid coal mining areas. This paper analyzes the current research progress and existing problems of plant water use in the western coal mining areas, discusses the improvement of water use strategies through microbial remediation in mining areas, and proposes the impact of different plant combinations on water use strategies and their research focuses in the ecological restoration of western arid coal mining areas. This lays a solid foundation for achieving green, sustainable, and high-quality development in the arid and semi-arid coal mining areas, and has important ecological application value

    Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products

    Get PDF
    We evaluate monoterpene-derived peroxy radical (MT-RO2) unimolecular autoxidation and self- and cross-reactions with other RO2 species in the GEOS-Chem global chemical transport model. The formation of associated highly oxygenated organic molecules (HOMs) and accretion products are tracked in competition with other bimolecular reactions. Autoxidation is the dominant fate up to 6-8 km for first-generation MT-RO2, which can undergo unimolecular H shifts. Reaction with NO can be a more common fate for H-shift rate constants < 0.1 s(-1) or at altitudes higher than 8 km due to the imposed Arrhenius temperature dependence of unimolecular H shifts. For MT-derived HOM-RO2, generated by multistep autoxidation of first-generation MT-RO2, reaction with other RO2 species is predicted to be the major fate throughout most of the boreal and tropical forest regions, whereas reaction with NO dominates in the temperate and subtropical forests of the Northern Hemisphere. The newly added reactions result in an approximate 4 % global average decrease in HO2 and RO2, mainly due to faster self-/cross-reactions of MT-RO2, but the impact upon HO2, OH, and NOx abundances is only important in the planetary boundary layer (PBL) over portions of tropical forests. Predicted HOM concentrations in MT-rich regions and seasons can exceed total organic aerosol predicted by the standard version of the GEOS-Chem model depending on the parameters used. Comparisons to observations reveal that large uncertainties remain for key reaction parameters and processes, especially with respect to the photochemical lifetime and volatility of HOMs as well as the rates and branching of associated RO2 accretion products. Further observations and laboratory studies related to MT-RO2-derived HOMs and gas-phase RO2 accretion product formation kinetics - especially their atmospheric fate, such as gas-particle partitioning, multiphase chemistry, and net secondary organic aerosol formation - are needed.Peer reviewe

    Global health effects of future atmospheric mercury emissions

    Get PDF
    Mercury is a potent neurotoxin that poses health risks to the global population. Anthropogenic mercury emissions to the atmosphere are projected to decrease in the future due to enhanced policy efforts such as the Minamata Convention, a legally-binding international treaty entered into force in 2017. Here, we report the development of a comprehensive climate-atmosphere-land-ocean-ecosystem and exposure-risk model framework for mercury and its application to project the health effects of future atmospheric emissions. Our results show that the accumulated health effects associated with mercury exposure during 2010–2050 are $19 (95% confidence interval: 4.7–54) trillion (2020 USD) realized to 2050 (3% discount rate) for the current policy scenario. Our results suggest a substantial increase in global human health cost if emission reduction actions are delayed. This comprehensive modeling approach provides a much-needed tool to help parties to evaluate the effectiveness of Hg emission controls as required by the Minamata Convention
    • 

    corecore