13 research outputs found

    1, 25-D3 Protects From Cerebral Ischemia by Maintaining BBB Permeability via PPAR-γ Activation

    Get PDF
    The blood-brain barrier (BBB) is a physical and biochemical barrier that maintains cerebral homeostasis. BBB dysfunction in an ischemic stroke, results in brain injury and subsequent neurological impairment. The aim of this study was to determine the possible protective effects of 1, 25-dihydroxyvitamin D3 [1, 25(OH)2D3, 1, 25-D3, vit D] on BBB dysfunction, at the early stages of an acute ischemic brain injury. We analyzed the effects of 1, 25-D3 on BBB integrity in terms of histopathological changes, the neurological deficit, infarct size and the expression of brain derived neurotrophic factor (BDNF), in a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. BBB permeability and the expression of permeability-related proteins in the brain were also evaluated by Evans blue (EB) staining and Western blotting respectively. To determine the possible mechanism underlying the role of 1, 25-D3 in BBB maintenance, after MCAO/R, the rats were treated with the specific peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662. Supplementation with 1, 25-D3 markedly improved the neurological scores of the rats, decreased the infarct volume, prevented neuronal deformation and upregulated the expression of the tight junction (TJ) and BDNF proteins in their brains. Furthermore, it activated PPARγ but downregulated neuro-inflammatory cytokines such as nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α), after MCAO/R. Taken together, 1, 25-D3 protects against cerebral ischemia by maintaining BBB permeability, upregulating the level of BDNF and inhibiting PPARγ-mediated neuro-inflammation

    Dietary vitamin D3 supplementation protects laying hens against lipopolysaccharide-induced immunological stress

    No full text
    Abstract Background The effects of vitamin D on the immune function of laying hens are not well understood. This study investigated the effects of vitamin D3 (VD3) on laying performance and immunological functions in laying hens under Escherichia coli lipopolysaccharide (LPS) challenge. Methods In experiment one, 360 Jinghong-1 strain layers (32 weeks) were randomly divided into four groups with six replicates per group and 15 hens per replicate. Hens were fed a basal diet supplemented with different levels of VD3 (0; 500; 1500; or 3000 IU VD3/kg of diet) for 10 weeks to determine laying performance, egg quality, and other parameters. In experiment two, 24 Jinghong laying hens (32 weeks) were fed basal diets with either 0 or 3000 IU VD3/kg of diet. After 10 weeks of feeding, six hens from each treatment were injected intravenously with 8 mg/kg of body weight of either LPS or saline. Blood and spleen samples were obtained for immune parameter analysis 4 h after injection. Results VD3 deficiency reduced egg production and egg quality; in addition, feed intake and feed-to-egg ratio increased. No significant differences were observed in these parameters except eggshell strength between dietary VD3 supplemental levels at 500; 1500; and 3000 IU VD3/kg of diet. VD3 deficiency increased serum hormone (calcitonin, parathyroid hormone, estradiol, and progesterone) and cytokine (IL-6, IL-10) levels, the ratio of IFN-γ to IL-4, myeloperoxidase activity and total IgG content in the serum, and upregulated the blood CD3+ T cell population. Splenic retinoid X receptor (RXR), nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and polymeric immunoglobulin receptor (pIgR) gene mRNA levels were upregulated in VD3-deficienct hens. VD3 deficiency significantly reduced serum Follicle stimulating hormone (FSH) and Luteinizing hormone (LH) concentrations and the number of CD4+CD25+ T cells in the blood. These changes were completely normalized by VD3 sufficiency. LPS reduced serum LH concentration, splenic lysozyme, and pIgR gene mRNA levels. LPS induced an increase in total serum IgM levels and the percentage of CD8+ T cells in the blood. The changes were completely reversed by VD3 addition. Conclusion VD3 supplementation could protect laying hens not only from VD3 deficiency but also from immunological stress

    CO2 methanation over TiO2-Al2O3 binary oxides supported Ru catalysts

    No full text
    TiO2 modified Al2O3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO2-Al2O3 catalyst in CO2 methanation reaction was investigated. Compared with Ru/Al2O3 catalyst, the Ru/TiO2-Al2O3 catalytic system exhibited a much higher activity in CO2 methanation reaction. The reaction rate over Ru/TiO2-Al2O3 was 0.59 mol CO2.(g Ru)(-1).h(-1), 3.1 times higher than that on Ru/Al2O3 [0.19 mol CO2.(g Ru)(-1).h(-1)]. The effect of TiO2 content and TiO2-Al2O3 calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H-2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO2-Al2O3 support is 2.8 nm, smaller than that on Al2O3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO2-Al2O3 catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO2 support, which hindered the aggregation of Ru nanoparticles. (C)c 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved

    First report of a p.Cys484Tyr Notch3 mutation in a CADASIL patient with acute bilateral multiple subcortical infarcts—case report and brief review

    No full text
    Abstract Background CADASIL(Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)is an inherited small vessel disease caused by mutations in NOTCH3 gene. Although NOTCH3 has numerous hotspots of gene mutations, mutations in exons 9 are rare. The p.C484T gene mutation type associated with it has not been reported in any relevant cases yet. Furthermore, CADASIL patients rarely present with acute bilateral multiple subcortical infarcts. Case presentation We report the case of a Chinese female patient with CADASIL who experienced “an acute bilateral subcortical infarction” because of“hemodynamic changes and hypercoagulability”. In genetic testing, we discovered a new Cys484Tyr mutation in exon 9, which has also been found in the patient’s two daughters. Conclusions It is important to note that this discovery not only expands the mutation spectrum of Notch3 mutations in CADASIL patients, but also examines the mechanism behind acute bilateral subcortical infarction in CADASIL patients via case reviews and literature reviews, in order to provide some clinical recommendations for early intervention, diagnosis, and treatment in similar cases in the future

    Methanol synthesis from CO2 and H-2 over Pd/ZnO/Al2O3: Catalyst structure dependence of methanol selectivity

    No full text
    CO2 hydrogenation to methanol was investigated over Pd/ZnO/Al2O3, focusing on the influence of the preparation method, reduction temperature and Pd loading on the catalytic performance. The structure of each catalyst was thoroughly examined using various techniques. The results indicated that the methanol selectivity depended on the content of PdZn alloy, which changed dynamically with varying the preparation methods and pretreatment procedures of the catalysts. More specifically, the ratio of PdZn/Pd-0 in the bimetallic compound increased with the rise of the reduction temperature, which eventually led to the increase of methanol selectivity. Additionally, the EXAFS results revealed the presence of ZnOx modified Pd species when the Pd loading was decreased to be lower than 2 wt%. However, the CH3OH selectivity remained almost identical when the reactions were conducted under similar CO2 conversions. Therefore, we conclude that both the PdZn alloy and Pd modified by ZnOx islands are the active sites for methanol synthesis from CO2 hydrogenation. (C) 2016 Elsevier B.V. All rights reserved

    Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation

    No full text
    Catalytic hydrogenation of CO2 to methane was investigated over Ru/rutile TiO2, focusing on the influence of the pretreatment temperature on the activity. Rutile TiO2 stabilized Ru nanoparticles even after pretreatment at 800 degrees C; therefore it was possible to establish the structure-activity relationship without considering the particle size effect. The CO2 turnover frequency initially increased with increasing pretreatment temperature from 300 to 800 degrees C, and reached a maximum value of 1.59 s(-1) on Ru/rutile TiO2 pretreated at 600 degrees C; it decreased to 1.16 s(-1) for the sample pretreated at 800 degrees C. The characterization results indicated that the activity depended on both the extent of encapsulation of Ru particles by TiOx layers and the number of hydroxyl groups on the TiOx surface. The mechanism of CO2 methanation was discussed based on in situ diffuse-reflectance infrared Fourier-transform spectroscopy results. (C) 2015 Elsevier Inc. All rights reserved

    The organic zinc with moderate chelation strength enhances the expression of related transporters in the jejunum and ileum of broilers

    No full text
    ABSTRACT: Our previous study demonstrated that the zinc (Zn) proteinate with moderate chelation strength (Zn-Prot M) enhanced the Zn absorption in the small intestine partially via increasing the expression of some Zn and amino acid transporters in the duodenum of broilers. However, it remains unknown whether the Zn-Prot M could also regulate the expression of related transporters in the jejunum and ileum of broilers in the above enhancement of Zn absorption. The present study was conducted to investigate the effect of the Zn-Prot M on the expression of related transporters in the jejunum and ileum of broilers compared to the Zn sulfate (ZnS). Zinc-deficient broilers (13-d-old) were fed with the Zn-unsupplemented basal diets (control) or the basal diets supplemented with 60 mg Zn/kg as ZnS or Zn-Prot M for 26 d. The results showed that in the jejunum, compared to the control, supplementation of the organic or inorganic Zn increased (P < 0.05) mRNA and protein expression of b0,+-type amino acid transporter (rBAT), Zn transporter 10 (ZnT10), and peptide-transporter 1 (PepT1) mRNA expression and Zn transporter 7 (ZnT7) protein expression on d 28, while y+L-type amino transporter 2 (y+LAT2) mRNA and protein expression, and protein expression of ZnT7 and ZnT10 on 28 d and zrt-irt-like protein 3 (ZIP3) and zrt-irt-like protein 5 (ZIP5) on d 39 were higher (P < 0.05) for Zn-Prot M than for ZnS. In the ileum, Zn addition regardless of Zn source up-regulated (P < 0.05) mRNA expression of Zn transporter 9 (ZnT9) and ZIP3, ZIP5, and y+LAT2 protein expression on d 28, and PepT1 mRNA and protein expression, ZIP3 and y+LAT2 mRNA expression and ZnT10 protein expression on d 39. Furthermore, Zn transporter 4 (ZnT4) and ZnT9 mRNA expression and Zn transporter 1 (ZnT1) protein expression on d 28, and y+LAT2 mRNA expression and ZnT10 and PepT1 protein expression on d 39 were higher (P < 0.05) for Zn-Prot M than for ZnS. It was concluded that the Zn-Prot M enhanced the expression of the ZnT1, ZnT4, ZnT9, ZnT10, ZIP3, ZIP5, y+LAT2, and PepT1 in the jejunum or ileum of broilers compared to the ZnS
    corecore