151 research outputs found

    Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs

    Get PDF
    The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed

    The use of Xuanbai Chengqi decoction on monkeypox disease through the estrone-target AR interaction

    Get PDF
    IntroductionAfter COVID-19, there was an outbreak of a new infectious disease caused by monkeypox virus. So far, no specific drug has been found to treat it. Xuanbai Chengqi decoction (XBCQD) has shown effects against a variety of viruses in China.MethodsWe searched for the active compounds and potential targets for XBCQD from multiple open databases and literature. Monkeypox related targets were searched out from the OMIM and GeneCards databases. After determining the assumed targets of XBCQD for monkeypox treatment, we built the PPI network and used R for GO enrichment and KEGG pathway analysis. The interactions between the active compounds and the hub targets were investigated by molecular docking and molecular dynamics (MD) simulations.ResultsIn total, 5 active compounds and 10 hub targets of XBCQD were screened out. GO enrichment and KEGG analysis demonstrated that XBCQD plays a therapeutic role in monkeypox mainly by regulating signaling pathways related to viral infection and inflammatory response. The main active compound estrone binding to target AR was confirmed to be the best therapy choice for monkeypox.DiscussionThis study systematically explored the interactions between the bioactive compounds of XBCQD and the monkeypox-specific XBCQD targets using network pharmacological methods, bioinformatics analyses and molecular simulations, suggesting that XBCQD could have a beneficial therapeutic effect on monkeypox by reducing the inflammatory damage and viral replication via multiple pathways. The use of XBCQD on monkeypox disease was confirmed to be best worked through the estrone-target AR interaction. Our work could provide evidence and guidance for further research on the treatment of monkeypox disease

    Vestibular Function in Children and Adults Before and After Unilateral or Sequential Bilateral Cochlear Implantation

    Get PDF
    Background: Cochlear implantation (CI) helps patients with severe or profound sensorineural hearing loss (SNHL) restore hearing and speech abilities. However, some patients exhibit abnormal vestibular functions with symptoms such as dizziness or balance disorders, after CI. Whether age at CI and CI approach (unilateral or sequential bilateral) affect vestibular functions in users with cochlear implants remains unclear.Objectives: To investigate the vestibular functions in children and adults before and after unilateral or sequential bilateral CI.Materials and Methods: Thirty-seven patients with severe or profound SNHL who were candidates for a first- or second-side CI were divided into three groups: first-side CI-implanted adults (≥18 years), first-side CI-implanted children (6–17 years), and second-side CI-implanted children (6–17 years). All cases were implanted with the round window approach to minimize damage to the intra-cochlear structures. The caloric test, vestibular evoked myogenic potential (VEMP) test, video head impulse test (vHIT), Dizziness Handicap Inventory (DHI), Pediatric Vestibular Symptom Questionnaire (PVSQ), and audiometric tests were performed before and 1 month after CI.Results: The abnormal rates of caloric test and VEMP test after CI in the first-side CI-implanted adults and children significantly increased compared with those before CI. The pre-implantation VEMP test showed significantly higher abnormal rates between first- and second-side CI-implanted children. No other significant differences of abnormal rates between first- and second-side CI-implanted children or between first-side CI-implanted adults and children were found. In second-side CI-implanted children, PVSQ scores significantly increased at day 3 post-implantation but decreased at day 30.Conclusion: CI has a negative effect on the results of caloric and VEMP tests, but not on vHIT, indicating that the otolith and low-frequency semicircular canal (SCC) are more vulnerable to damage from CI. The alterations of vestibular functions resulting from CI surgery may be independent of age at CI and CI approach (unilateral or sequential bilateral). Long-term impacts on the vestibular function from CI surgery, as well as the chronic electrical stimulation to the cochlea, are still to be investigated

    Facile synthesis: from Laminaria hyperborea to cellulose films and fibers

    Get PDF
    Inverted nozzle-pressurized gyration was used as a processing methodology for regenerating cellulose extracted from Laminaria hyperborea for the first time. The viscoelasticity of cellulose/1-ethyl-3-methylimidazolium acetate (EMIM OAc) solutions exhibited high concentration dependence, leading to the production of cellulose products with diverse structures. The regenerated cellulose transitioned from thin films to fibers (≈ 5 μm diameter) as the concentration was increased. The impact of collection distance and working pressure on the morphology and yield of fibers was investigated. This work provides a new sustainable route for processing biopolymers, offering significant potential for applications in biomedicine and healthcare

    Internalized compartments encapsulated nanogels for targeted drug delivery

    Get PDF
    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. Endosome formed by internalization of plasma membrane has massive of membrane proteins and receptors on the surface, which is able to specifically target to the homotypic cells. Herein, we describe a simple method to fabricate an endosome membrane-coated nanogel (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating crosslinker and photoiniator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation inside endosome. The resulting endosome mimetic nanogels loaded with Doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to bare HA nanogel with DOX. This study illustrates the potential of utilizing endosome membrane-mimicking formulation for targeted cancer therapy, and offers guideline for developing natural particulates-inspired drug delivery system

    Energy storage for black start services : a review

    Get PDF
    With the increasing deployment of renewable energy-based power generation plants, the power system is becoming increasingly vulnerable due to the intermittent nature of renewable energy, and a blackout can be the worst scenario. The current auxiliary generators must be upgraded to energy sources with substantially high power and storage capacity, a short response time, good profitability, and minimal environmental concern. Difficulties in the power restoration of renewable energy generators should also be addressed. The different energy storage methods can store and release electrical/thermal/mechanical energy and provide flexibility and stability to the power system. Herein, a review of the use of energy storage methods for black start services is provided, for which little has been discussed in the literature. First, the challenges that impede a stable, environmentally friendly, and cost-effective energy storage-based black start are identified. The energy storage-based black start service may lack supply resilience. Second, the typical energy storage-based black start service, including explanations on its steps and configurations, is introduced. Black start services with different energy storage technologies, including electrochemical, thermal, and electromechanical resources, are compared. Results suggest that hybridization of energy storage technologies should be developed, which mitigates the disadvantages of individual energy storage methods, considering the deployment of energy storage-based black start services

    The combined transarterial and transvenous onyx embolization of dural arteriovenous fistula of hypoglossal canal via the external jugular vein and facial vein: A case report

    Get PDF
    Dural arteriovenous fistulas of the hypoglossal canal (HCDAVFs) involving the anterior condylar confluence (ACC) and anterior condylar vein (ACV) are infrequent. Although transvenous embolization through the internal jugular vein (IJV) is the preferred treatment option for type I and II fistulas, it can be difficult if the IJV is unavailable. Here we report a rare case of HCDAVF in which the most common transvenous embolization access via IJV was not available. The patient underwent transarterial and transvenous onyx embolization. Transarterial embolization (TAE) aimed at controlling the arterial inflow and subsequently TVE was performed via the external jugular vein (EJV), the facial vein, the ophthalmic vein, the cavernous sinus, ACC, and ultimately to the fistula pouch. Complete obliteration of the HCDAVF was achieved without complications. We suggest that transvenous embolization (TVE) via the EJV and the facial vein can be effective in cases where trans-IJV is not possible

    Homogenization of Halide Distribution and Carrier Dynamics in Alloyed Organic-Inorganic Perovskites

    Get PDF
    Perovskite solar cells have shown remarkable efficiencies beyond 22%, through organic and inorganic cation alloying. However, the role of alkali-metal cations is not well-understood. By using synchrotron-based nano-X-ray fluorescence and complementary measurements, we show that when adding RbI and/or CsI the halide distribution becomes homogenous. This homogenization translates into long-lived charge carrier decays, spatially homogenous carrier dynamics visualized by ultrafast microscopy, as well as improved photovoltaic device performance. We find that Rb and K phase-segregate in highly concentrated aggregates. Synchrotron-based X-ray-beam-induced current and electron-beam-induced current of solar cells show that Rb clusters do not contribute to the current and are recombination active. Our findings bring light to the beneficial effects of alkali metal halides in perovskites, and point at areas of weakness in the elemental composition of these complex perovskites, paving the way to improved performance in this rapidly growing family of materials for solar cell applications.Comment: updated author metadat
    • …
    corecore