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Introduction: After COVID-19, there was an outbreak of a new infectious disease 
caused by monkeypox virus. So far, no specific drug has been found to treat 
it. Xuanbai Chengqi decoction (XBCQD) has shown effects against a variety of 
viruses in China.

Methods: We searched for the active compounds and potential targets for XBCQD 
from multiple open databases and literature. Monkeypox related targets were 
searched out from the OMIM and GeneCards databases. After determining the 
assumed targets of XBCQD for monkeypox treatment, we built the PPI network 
and used R for GO enrichment and KEGG pathway analysis. The interactions 
between the active compounds and the hub targets were investigated by 
molecular docking and molecular dynamics (MD) simulations.

Results: In total, 5 active compounds and 10 hub targets of XBCQD were screened 
out. GO enrichment and KEGG analysis demonstrated that XBCQD plays a therapeutic 
role in monkeypox mainly by regulating signaling pathways related to viral infection 
and inflammatory response. The main active compound estrone binding to target AR 
was confirmed to be the best therapy choice for monkeypox.

Discussion: This study systematically explored the interactions between the 
bioactive compounds of XBCQD and the monkeypox-specific XBCQD targets 
using network pharmacological methods, bioinformatics analyses and molecular 
simulations, suggesting that XBCQD could have a beneficial therapeutic effect on 
monkeypox by reducing the inflammatory damage and viral replication via multiple 
pathways. The use of XBCQD on monkeypox disease was confirmed to be best 
worked through the estrone-target AR interaction. Our work could provide evidence 
and guidance for further research on the treatment of monkeypox disease.
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1. Background

Monkeypox, a virus that used to be common around rainforests in Central and West Africa, 
has spread out globally (Zardi and Chello, 2022). In June 2022, the World Health Organization 
(WHO) reported that more than 550 confirmed cases of monkeypox were identified in 30 
countries and territories worldwide (Hasan and Saeed, 2022). In July 2022, WHO sounded the 
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alarm again, declaring the monkeypox outbreak to be a Public Health 
Emergency of International Concern (PHEIC) (Shafaati and Zandi, 
2023). It was the seventh PHEIC the WHO had declared by far, and 
was the highest alert level the agency could give (Wilder-Smith and 
Osman, 2020; Shafaati et al., 2022).

Monkeypox disease is a rare zoonotic disease caused by the 
monkeypox virus (Dou et al., 2023). It is endemic in central and west 
Africa, with the greatest concentration in the Democratic Republic of 
the Congo. Although it was firstly found in captive monkeys, available 
data suggested that the African rodents were natural hosts. For 
instance, squirrels, rats, mice, monkeys, marmots and humans were 
all infected (Chen et al., 2022). There were two genetically distinct 
branches identified (Hutson et al., 2010), and the Congo Basin (central 
Africa) branch was reported more frequently than the west African 
branch. The current outbreak of Monkeypox in 2022 involved multiple 
countries on different continents, mainly in men who had sex with 
men (MSM), and its manifestations were related to genital lesions 
(Abu-Hammad et  al., 2023). Up to 22 June 2022, 99% of the 508 
confirmed cases of monkeypox in Madrid region of Spain belonged to 
the MSM population, and the lesions affected the genital, perineum, 
or perianal area (Iñigo Martínez et al., 2022). It was also identified 
swollen inguinal lymph nodes as the main features, indicating that 
sexual transmission was the primary mode of transmission (Letafati 
and Sakhavarz, 2023). On 6 July 2022, Germany reported 1,304 
confirmed cases, which were also concentrated in the MSM population 
(Patel and Patel, 2023). Sequencing data from countries indicated that 
the 2022 outbreak was caused by the west African branch of the 
monkeypox virus. However, the up-to-date research suggested that 
there were two distinct lineages of the monkeypox virus with separate 
sources found in the US.

The monkeypox virus is a double-stranded DNA virus that is 
related to the variola virus (Kaler et al., 2022; Shafaati and Zandi, 
2022). The clinical manifestations of human monkeypox are similar 
to those of smallpox, which often cause rash, fever, chills, and muscle 
soreness (Reynolds et al., 2019). The fatality rate of monkeypox is 
about 3% ~ 6%, but relatively higher in children, young adults, and 
immunodeficient individuals (Ligon, 2004). When monkeypox is 
complicated with septicemia, meningitis, osteomyelitis, and other 
diseases, the death rate could be as high as 10% (Patel et al., 2022; Rizk 
et al., 2022). Up to now, some antiviral drugs and vaccines initially 
developed in smallpox have been approved for the treatment and 
prevention of monkeypox (Hung et al., 2022). But the effects of the 
treatment and prevention are still being investigated (Shamim et al., 
2023). In fact, no specific drugs against monkeypox virus have been 
developed by far (Zovi et al., 2022). In view of the immunomodulatory 
and antiviral effects of traditional Chinese medicine (TCM) and its 
long history of clinical applications, this study aims to explore the 
potential treatment of monkeypox with TCM.

Xuanbai Chengqi decoction (XBCQD) is a TCM consisting of 
four Chinese herbs, including mineral-based gypsum, herbal rhubarb, 
bitter almond, and trichosanthes (Hanzlicek et  al., 2014). It was 
reported to improve the disease symptoms effectively and prognosis 
of acute lung injury (ALI) patients with fewer adverse reactions by 
protecting lung function, alleviating excessive inflammatory reactions 
and tissue damage (Zhu et al., 2021). In addition, XBCQD was found 
to be  an alternative treatment for severe infectious lung diseases 
caused by influenza and severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) (Huang et al., 2021; Zhu et al., 2021).

In fact, XBCQD is a representative Chinese medicine prescription 
in the Differentiation of Febrile Disease written by Wu Jutong in Qing 
dynasty. It has been widely used in China for the treatment of lung 
injury, pulmonary fibrosis, chronic obstructive pulmonary and other 
common respiratory diseases. It can effectively reduce phlegm, heat, 
cough, wheezing, chest tightness, and has less adverse reactions (Wang 
et  al., 2021; Huo et  al., 2022). With the spread of monkeypox 
worldwide, the China National Health Commission and the National 
Administration of TCM issued the guidelines for the diagnosis and 
treatment of monkeypox in June 2022, in which XBCQD and other 
TCM were recommended to treat monkeypox patients with different 
symptoms (Desai et al., 2022; Warner et al., 2022).

Network pharmacology is a powerful tool to uncover the effective 
compounds in TCM from a systematical molecular way, integrating 
multiple open databases and bioinformatics techniques to construct a 
comprehensive drug-target-disease network (Zhang et al., 2013). Such 
a multi-component, multi-target network could reveal the mechanism 
behind the action of the drug (Noor et al., 2022). Molecular docking 
offers a possible way to reveal the in vivo binding patterns of ligand-
receptor (Salmaso and Moro, 2018), which could be used to further 
explore the ligand-receptor relationship (Meng et al., 2011). Molecular 
dynamics (MD) simulation allows for the study of various ligand-
receptor motions based on Newtonian mechanics to assess their long-
time stabilities and flexibilities (Hollingsworth and Dror, 2018).

In this work, we first utilized network pharmacology to screen 
active drug compounds for the monkeypox virus and explored the 
potential biological mechanism behind the treatment of monkeypox 
by XBCQD from a systematic and molecular perspective. In total, 5 
active compounds and 10 hub targets of XBCQD were screened out. 
Subsequently, the biological functional network of XBCQD was 
constructed to elucidate the regulatory way of XBCQD. The results 
demonstrated that XBCQD played a therapeutic role in monkeypox 
mainly by regulating signaling pathways related to viral infection and 
inflammatory response. Molecular docking was used to predict the 
binding energy scores and patterns between the hub targets and the 
potential therapeutic compounds. Finally, MD simulation was 
adopted to simulate the interaction dynamics and calculate the change 
of binding free energy of the target-compound complex, so as to 
provide theoretical foundation for the future clinical applications. The 
main active compound estrone binding to target AR was finally 
confirmed to be the best therapy choice for monkeypox.

2. Materials and methods

2.1. Active compounds in XBCQD and the 
corresponding targets

The TCMSP platform1 was adopted to screen out the active 
compounds in XBCQD under the following standard criteria: the oral 
availability (OB) ≥ 30% and drug-like likeness (DL) ≥ 0.18, followed 
by a target search for active compounds by their MOL.IDs. The 
standard criteria is the general standard for screening Chinese 
medicine according to the relevant literature (Ru et al., 2014). The 

1 https://tcmsp-e.com/
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active compounds of Trichosanthes pericarpium were collected from 
the SYMmap database.2 The PubChem database3 was used to derive 
the Simplified Molecular Input Line Entry System (SMILES) of the 
active compounds. The SMILES were then input into the 
SwissTargetPrediction structural similarity forecast target database4 to 
predict the valid targets. Unmatched names of targets were 
supplemented by literature review (Richards et al., 2015; Wang et al., 
2021). Finally, the Uniprot database5 was used to annotate the 
relevant targets.

2.2. The compound-target network

The Cytoscape 3.9.2 software was adopted to prepare the 
compound-target network file and type file, as well as to conduct the 
network topology analysis. To construct the compound-target 
network map, the target map, color, transparency, and size were 
adjusted according to the connectivity (degree) of the targets.

2.3. The targets of monkeypox disease

The targets of monkeypox disease were searched by using OMIM6 
and GeneCards7 databases. Through the search in GeneCards 
database, “monkeypox” and “monkeypox virus” were set as keywords 
to get monkeypox related targets. Monkeypox related targets were also 
obtained by searching “monkeypox” as a keyword in the OMIM 
database (see footnote 6). The targets symbols information 
corresponding to monkeypox disease was downloaded. Targets and 
functions were set to “human” and “VLOOKUP” to match target 
gene names.

2.4. The cross targets

Using the Venny online database,8 a reflection of intersections of 
drug target genes and disease genes, that is, the crossover between 
potential targets for XBCQD and monkeypox related targets could 
be identified. These identified crossover targets were considered as 
potential anti-monkeypox hub targets.

2.5. PPI network and cluster analysis

The String9 platform was used to construct the PPI network. 
Potential anti-monkeypox key targets (identified in the “The cross 
targets” section) were evaluated using the String platform with PPI 
highest confidence and species limited to 0.900 and homo sapiens. 

2 http://www.symmap.org/

3 https://pubchem.ncbi.nlm.nih.gov

4 http://www.swisstargetprediction.ch

5 https://www.uniprot.org

6 https://www.omim.org/

7 https://www.genecards.org/

8 https://bioinfogp.cnb.csic.es/tools/venny/

9 https://string-db.org/

The string PPI analysis results were then uploaded to Cytoscape 3.9.2 
software to identify potential hub anti-monkeypox targets. In 
addition, the Simple Text Data Format (.tsv) files of PPI results were 
imported into Cytoscape 3.9.2 software to visualize the PPI network. 
As the number of nodes in the PPI network decreases, its color 
changes from red to yellow. Nodes that met the requirement of degree 
centrality were retrieved and identified as the hub targets of 
monkeypox. In the PPI network, the degree of the node represents 
the number of edges between it and other nodes. And the number of 
connections with other nodes indicates the significance of the node 
(Yu et al., 2022).

2.6. Go and KEGG analyses

GO function and KEGG path enrichment were analyzed using 
Bioconductor10 platform in R language. GO analysis of drug therapy 
gene functions was annotated in terms of biological process (BP), 
cellular component (CC), and molecular function (MF). KEGG is 
mainly a pathway analysis, aiming to elucidate the major signaling 
pathways for drug therapy. After installation of the R package, 
we introduced the disease target genes with specific parameters. The 
“Selection identifier” and “List type” were set to “official gene symbol” 
and “gene list.” The species were defined as “Homo,” “background” and 
“Homo sapiens” in “List.” The target, the minimum overlap, the p-value 
and the minimum concentration were set to “human,” 3, 0.05 and 1.5, 
respectively. Then we  ran the gene ontology function and KEGG 
pathway on the target genes. We screened and preserved the results of 
the most important BP, CC, MF, and KEGG pathways. Finally, the 
corresponding bubble diagram was derived.

2.7. Molecular docking

To reveal the binding patterns between the active compounds and 
the targets, AutoDock Vina software, Discovery Studio 4.5 Client and 
PyMOL software were used. The 3D structures of the central targets 
(receptors) were obtained from the RCSB PDB11 database and saved 
into PDB format. The obtained 3D structures (in PDB format) were 
further processed using PyMOL software (version 2.2.0) to remove 
water molecules (“solvent removal” command) and small ligands 
(“organics removal” command). The active compounds in 2D 
structures in SDF format were downloaded from PubChem website 
(see footnote 3). The files were then converted into PDB format using 
the Open Babel software (version 2.4.1). Hydrogen and Gasteiger 
charges were added to the above receptors and ligands using 
AutoDock Vina software, and then saved into PDBQT format. The 
AutoGrid tool of AutoDock Vina software was used to set the 
interfacing frame parameters, including the grid box that contained 
the entire system. The parameter was set to Lamarck Genetic 
Algorithm (LGA), which generated 10 docking results for each ligand 
and corresponding receptor. All the docking results were visualized by 
PyMOL software. Finally, the optimal docked structure could 

10 http://www.bioconductor.org/

11 https://www.rcsb.org/
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be  obtained based on the docking scores of all the possible 
docked structures.

2.8. MD simulation

The long-range electrostatic interactions were calculated using the 
particle mesh Ewald (PME) method. The target was placed in the 
center of simulation box filled with water TIP3P molecules with 
distance of 1.2 nm from the box boundary. There were 33 Na+ ions 
introduced in the water box to neutralize the charge of the whole 
system. The system was firstly balanced with energy minimization 
process which ran up to 100,000 steps using the steepest descent 
algorithm. Then the system was equilibrated to 310 K with v-rescale 
(velocity rescaling) method and backbone restrained. Subsequently, 
the system was further equilibrated at constant pressure (1 bar) and 
constant temperature (310 K). Finally, 200 ns MD test was conducted 
after all the restraints released. The simulation results were analyzed 
by Gromacs 5.1.2 built-in tools and our in-house scripts.

3. Results

3.1. Active compounds in XBCQD and the 
corresponding targets

In total, 285 compounds were screened out by the TCMSP 
database, among which 16, 19 and 11 compounds were from herbal 
rhubarb, bitter almond, and trichosanthes, respectively. And 43 active 
compounds met the OB ≥ 30% and DL ≥ 0.18 standards, which were 
selected for further analysis after removal of the duplicates. The 
TCMSP database was used to obtain the corresponding targets. All 
targets were then entered into the Uniprot database and normalized 
by removing the repeated ones. Finally, 116 potential targets 
were obtained.

3.2. Targets of monkeypox virus

The GeneCards database (Supplementary Table S1) and the 
OMIM database (Supplementary Table S2) yielded a total of 36 and 
95 targets, respectively. After removal of duplicates, the number of 
related targets was 95. The 116 XBCQD-related targets and the 95 
monkeypox virus gene targets were mapped to each other using the 
online tool Venny 2.1.0 software.12 36 XBCQD-monkeypox virus 
intersection targets were obtained (Figure 1A). All of the intersection 
targets were located between the differentially expressed genes in the 
monkeypox virus dataset.

3.3. PPI network analysis

According to the PPI network analysis (Figure  1C), the 36 
predicted destinations were imported into String. If a node’s degree, 

12 http://bioinfo.genotoul.fr/jvenn

betweenness, and proximity meet certain criteria, it can be designated 
as a hub node (Wan et al., 2019). The network centrality was used, 
individually or collectively, to define the network properties of the 
compounds (degree centrality, betweenness centrality, and closeness 
centrality) and to judge the importance of the nodes (Valente et al., 
2008; Oldham et al., 2019). Nodes with higher levels (larger sizes) were 
considered to play a more critical role in the network (Chen 
et al., 2013).

The ranking of the nodes of the most important active compounds 
in XBCQD was summarized in Table  1, including beta-sitosterol, 
Stigmasterol, Gamma-Aminobutyric Acid, Phytol, estrone, Machiline, 
l-SPD, aloe-emodin, Glabridin, and Licochalcone B, etc. The top 10 
targets were ESR1 (Estrogen Receptor 1, degree = 19), TP53 (tumor 
protein p53, degree = 19), CASP3 (cysteine-aspartic acid protease 3, 
degree = 17), JUN (transcription factor Jun, degree = 17), TNF (Tumor 
Necrosis Factor, degree = 17), MYC (Cellular myelocytomatosis 
oncogene, degree = 17), CDKN1A (Cyclin-dependent kinase inhibitor 
1A, degree = 13), 1L1B (Interleukin 1 Beta, degree = 13), CCNB1 (G2/
mitotic-specific cyclin-B1, degree = 12), and AR (androgen receptor, 
degree = 11) (Figure 1B). Based on the above compound and target 
information, a compound-target pathway network was constructed to 
explain the mechanism of XBCQD against monkeypox virus, as 
shown in Figure 1D. The yellow V-shaped, light purple hexagon, light 
pink hexagon, light green hexagon and blue diamond shape represent 
herb names, KXR targets, DH targets, GLP targets and intersection 
core targets, respectively.

3.4. Go and KEGG pathway enrichment 
analyses

The 36 XBCQD-monkey pox virus intersection targets were 
imported into the Metascape platform. GO functional enrichment 
analysis was performed on the targets of the active ingredients in the 
treatment of monkey pox virus from the levels of BP, CC, and MF 
(Figure  2A). The top  10 items were selected for visual analysis 
(Figure  2B). In total, there were 2,455 BP items 
(Supplementary Table S3). The size of the circles indicates the number 
of targets, and the darker of the circle indicates the larger log p value 
of the BP item.

It can be found that BP was related to rhythmic process, positive 
regulation of cell cycle, response to drug, epithelial cell proliferation, 
DNA-templated transcription, initiation, response to steroid 
hormone, regulation of epithelial cell proliferation, negative 
regulation of protein phosphorylation, regulation of epithelial cell 
proliferation, and transcription initiation from RNA polymerase II 
promoter. There were 155 items in the CC analysis 
(Supplementary Table S4), and the top 10 items were selected for 
visual analysis (Supplementary Figure S1), including postsynaptic 
membrane, membrane raft, membrane microdomain, presynaptic 
membrane components, presynaptic membrane components, nuclear 
periphery, integral component of postsynaptic membrane, integral 
component of synaptic membrane and intrinsic component of 
synaptic membrane. In addition, there were a total of 260 items in MF 
molecular function analysis (Supplementary Table S5), with top 10 
entries also visualized (Supplementary Figure S2), which were related 
to drug binding, nuclear receptor activity, ligand-activated 
transcription factor activity, protein kinase C activity, 
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calcium-dependent protein kinase C activity, histone kinase activity, 
RNA polymerase II general transcription initiation factor binding, 
postsynaptic neurotransmitter receptor activity, acetylcholine 
receptor activity, and calcium-dependent protein serine/threonine 
kinase activity. According to the log p value in Figure 2D, 10 signaling 
pathways with high probability were screened according to the 
enrichment factor value and the number of genes involved in each 
pathway, which were closely related to the therapeutic mechanism of 
monkeypox virus. The size of the circle indicates the number of 
targets, and the darker of the circle indicates the larger log p value of 
the path.

To analyze the significance of hub targets in pathways involved 
in monkeypox virus treatment, the top 10 pathways determined 
according to gene counts and adjusted p values from the KEGG 
enrichment analysis and related targets were used to construct the 
KEGG key pathway network (Figure 2C). According to Figure 2C 
and Supplementary Table S6, XBCQD in the treatment of 
monkeypox virus could be  mainly related to Hepatitis B 
(Supplementary Figure S3), AGE-RAGE signal pathway of diabetes 
complications, Breast cancer, Proteoglycans in cancer, Human 
cytomegalovirus infection, MAPK signaling pathway, Estrogen 
signaling pathway, Epstein–Barr virus infection, Human 
immunodeficiency virus 1 infection and Chemical carcinogenesis-
receptor activation. Therefore, XBCQD could target multiple 
functional and biological factors in the treatment of monkeypox 
virus, and its effect was mainly reflected in affecting the process of 
cell proliferation and apoptosis. The components in XBCQD had 
direct or indirect regulatory effects on the inflammatory response 

with regard to pruritic inflammation. However, the effects and 
far-reaching impact are still needed to be further verified.

3.5. Molecular docking of 
compound-target

Based on the monkeypox-related targets and selected compounds 
from the PPI network, molecular docking was performed. The 
interactions between the potential active compounds and the hub targets 
were analyzed using the AutoDock Vina, Discovery Studio 4.5 Client and 
PyMOL software applications. The selected top 5 active compounds 
included beta-sitosterol (MOL000087), Stigmasterol (MOL003035), 
Gamma-Aminobutyric Acid (MOL000388), Phytol (MOL001442) and 
estrone (MOL008204). The protein structures of hub targets were 
acquired online from RCSB PDB, including AR (PDB ID: 2QPY), 
CASP3 (PDB ID: 6BDV), CCNB1 (PDB ID: 2B9R), CDKN1A (PDB ID: 
3TS8), ESR1 (PDB ID: 1A52), IL1B (PDB ID: 4DEP), JUN (PDB ID: 
1FOS), MYC (PDB ID: 7C36), TP53 (PDB ID: 4MZI) and TNF (PDB 
ID: 1TNF). The values of affinity energy were obtained by docking 
analyses (Table 2). Notably, the lower of the affinity energy indicates the 
stronger of the binding capacity and more stable of the binding 
conformation. In general, the energy less than −5 kcal/mol indicates that 
the receptor has some binding ability to the ligand. Our results showed 
that estrone-AR (−12 kcal/mol), estrone-ESR1 (−11.1 kcal/mol), 
Stignasterol-CASP3 (−10.4 kcal/mol), and beta-sitosterol-CASP3 
(−9.9 kcal/mol) exhibited stronger binding affinities than the other 
moieties. The docking patterns of all molecules were shown in Figure 3.

FIGURE 1

Potential targets of XBCQD and monkeypox, and PPI network. (A) Venn diagram of potential gene targets. (B) The top 10 monkeypox targets by 
degree. (C) The PPI network of XBCQD for the treatment of monkeypox. (D) The compounds-targets network showing potential mechanism of 
XBCQD for the treatment of monkeypox.
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3.6. Structural stability and interaction 
energy by MD simulation

The two best dockings between the compounds and the targets 
(estrone-AR and estrone-ESR1) were selected to perform the MD 

simulations. After 200 ns of MD simulations, the dynamic 
evolutions of estrone-AR and estrone-ESR1 complexes were 
studied. The conformations of estrone-AR and estrone-ESR1 
complexes as well as their contact residues were shown in 
Figures  4A,B. The interaction energy, radius of gyration (Rg), 
distance distribution, number of hydrogen bonds, root-mean-
square fluctuation (RMSF) and root-mean-square deviation 
(RMSD) were analyzed accordingly.

As shown in Figure  4A, the RMSD of the last 50 ns for 
estrone-ESR1 was 0.37 ± 0.06 nm, which was higher than the value 
of 0.20 ± 0.03 nm for estrone-AR, demonstrating a higher 
structural flexibility of estrone-ESR1 complex. Subsequently, 
we analyzed the change of protein cyclotron radius during the 
200 ns simulation, which could characterize the compactness of 
the protein structure. From Figure 4B, it can be observed that the 
radius of gyration (Rg) of AR basically remained at 1.85 ± 0.02 nm 
during the whole simulation process, whereas the Rg of ESR1 
decreased from 1.97 ± 0.04 nm in the initial 50 ns to 1.89 ± 0.03 nm 
in the last 50 ns. The evolutions of Rg values were consistent with 
those of RMSD, indicating that the presence of estrone leaded to 
a tighter structure of ESR1. According to the changes of 
interaction energy during the 200 ns simulations shown in 
Figure  4C, the estrone-AR complex showed lower interaction 

FIGURE 2

GO function and KEGG pathway enrichment analysis of XBCQD in the treatment of monkeypox. (A) GO functional analysis, including BP, CC, and MF. 
(B) Bubble diagram of BP enrichment. (C) Gene ontology of the top 10 pathways in XBCQD against monkeypox and (D) bubble diagram of KEGG 
pathway enrichment.

TABLE 1 Node ranking of the main active compounds.

ID Name Degree

MOL000087 beta-sitosterol 28

MOL003035 Stigmasterol 26

MOL000388 Gamma-Aminobutyric 

Acid

24

MOL001442 Phytol 23

MOL008204 estrone 20

MOL007207 Machiline 20

MOL012922 l-SPD 20

MOL000471 aloe-emodin 19

MOL004908 Glabridin 19

MOL004841 Licochalcone B 13
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energy of −186 ± 27 kJ/mol than that of estrone-ESR1 complex 
(−157 ± 25 kJ/mol) during the last 50 ns. The radial distribution 
functions from estrone to ESR1 and AR were plotted in 
Figure 4D. It can be observed that estrone had a slightly closer 
contact with AR than ESR1.

From Figures 5A,B, it can be observed that amino acid Glu 353 
of AR and Asn 705 of ESR1 could form hydrogen bonds with 
phenol hydroxyl of estrone. Comparing Figures  5C,D, it can 
be  clearly seen that AR-estrone were more likely to generate 
hydrogen bonds and more stable than the ESR1-estrone. It can 
be seen from Figures 5E,F that the RMSF values of amino acids in 
AR (residues 676–913: 0.11 ± 0.04 nm) were generally lower than 
those in ESR1 (residues 312–521: 0.15 ± 0.05 nm). Based on the 
results of MD simulations, the estrone-AR complex was proposed 
to possess better interaction stability and binding ability than the 
estrone-ESR1 complex.

4. Discussion

TCM has accumulated a long history of clinical experience and 
efficacious prescriptions in preventing and treating diseases (Xing 
and Liu, 2021). It has been demonstrated to inhibit viral replications 
(Magden et al., 2005), however, the molecular mechanisms behind 
its effects have not been fully elucidated (Estep et al., 2011). To 
explore the potential pharmacological and molecular mechanism 
of XBCQD against monkeypox, we  first employed network 
pharmacology in this study. A total of 36 potential targets associated 
with monkeypox were identified. Many of the targets were found to 
be hit by more than one compound. The results indicated that the 
active compounds of XBCQD could regulate more than one target 
and could have a synergistic effect on these targets.

The PPI analysis of the 36 targets showed that the top 10 hub targets, 
including ESR1, TP53, CASP3, JUN, TNF, MYC, CDKN1A, 1L1B, 

FIGURE 3

Molecular docking diagrams with 2D and 3D plots. The complexes of (A) estrone-AR (−12  kcal/mol), (B) estrone-ESR1 (−11.1  kcal/mol), (C) Stignasterol-
CASP3 (−10.4  kcal/mol), and (D) beta-sitosterol-CASP3 (−9.9  kcal/mol).

TABLE 2 The docking energy scores of the potential active compounds and hub targets.

ID MOL000087 MOL008204 MOL000388 MOL001442 MOL003035

Name Beta-sitosterol Estrone
Gamma-

Aminobutyric Acid
Phytol Stignasterol

AR −8 −12 −4.3 −6.7 −8.4

CASP3 −9.9 −8.3 −4 −6.1 −10.4

CCNB1 −7.1 −7.3 −4.2 −4.8 −7.3

CDKN1A −7.3 −7.2 −3.8 −5 −7.5

ESR1 −7 −11.1 −4.3 −5.8 −7.3

IL1B −6.8 −7 −4.3 −4.4 −7.3

JUN −8.1 −8.2 −4.7 −5.7 −8.2

MYC −6.8 −7.6 −4.4 −5.1 −7.1

TNF −6.6 −6.8 −4.2 −4.3 −6.8

TP53 −7.8 −7.9 −3.8 −5.3 −8.1
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CCNB1, and AR may be the key targets of the treatment of monkeypox 
virus. The top 5 beta-sitosterol, Stigmasterol, Gamma-Aminobutyric 
Acid, Phytol, estrone and the top 10 targets were selected in this study. 
These bioactive compounds were found to effectively bind to the 10 
targets according to the results of molecular docking. We  further 
performed GO enrichment analysis on the 36 selected targets to better 
understand the multiple effects of XBCQD against monkeypox virus 
from a systematic perspective. The top 10 GO functional categories 
indicated that XBCQD may exert its effects through the involvement in 
the BP, MF, and CC. Among these targets, TP53 and ESR1 ranked 
highest. It was reported that TP53 could be one of the key enzymes in 
prostaglandin biosynthesis, which had an association with inflammation 
and mitosis (Costa et al., 2002). In addition, the inhibition of HIV-1, 
HCV and HSV by the serine protease inhibitor antithrombin III (ATIII) 
might be  the result of TP53-mediated downstream synthesis of 
arachidonic acids, including prostaglandins (Smee et al., 2014; He et al., 
2015; Mussbacher et al., 2019). There was another study suggesting that 
the inhibition of ESR1 might be a potential therapeutic strategy for 
SARS-CoV-2 infection (Stilhano et al., 2020; Zhou et al., 2020; Li et al., 
2022). Other identified hub targets were reported to be  related to 
immune response and cytokine secretion (Lei et al., 2021). For example, 
JUN was found to be a stress response gene that altered cell structure 
during human development (Provençal et al., 2020). IL-6 was one of the 
classical pro-inflammatory cytokines that directly or indirectly activated 
a range of different cell types, further causing the secretion of cytokines 
(Turner et al., 2014; Hirano, 2021).

The concentration of GO terms in hub targets showed that 
XBCQD treatment of monkeypox was mainly involved the rhythmic 

process, positive regulation of cell cycle, response to drug, epithelial cell 
proliferation and DNA-templated transcription, etc. KEGG pathway 
enrichment analysis of these targets indicated that they were involved 
in Hepatitis B, AGE-RAGE signal pathway of diabetes complications, 
Breast cancer, Proteoglycans in cancer, Human cytomegalovirus 
infection, etc. The AGE-RAGE signaling pathway was reported to have 
a regulatory role in diabetes (Ramasamy et al., 2011; Kay et al., 2016). 
Some studies reported that IL-17 regulated viral infections (Ma et al., 
2019; Ge et al., 2020; Mills, 2023). As a key cytokine in the pathogenesis 
of inflammation, TNF was involved in viral infection (Seo and Webster, 
2002; Tuazon Kels et  al., 2020; Darif et  al., 2021). The Hepatitis B 
pathway was reported as major cellular signaling pathway activated by 
a variety of viruses (Branda and Wands, 2006; Nguyen et al., 2008; 
Herrscher et  al., 2020). Moreover, estrogen signaling pathway was 
found to be  enriched in both monkeypox infected monkeys and 
human models (Chadwick et al., 2005; Falcinelli et al., 2016; Xuan et al., 
2022). GO and KEGG enrichment analysis suggested that XCBQD 
may have a positive effect on monkeypox by inhibiting inflammation 
and viral replication via these pathways.

The results of network pharmacology were validated by molecular 
docking of the top  10 targets and 5 active compounds. The two 
complexes with lowest binding energy scores were found to 
be  estrone-AR and estrone-ESR1. Furthermore, MD simulations 
showed that the average value of interaction energy of estrone-AR was 
−186 kcal/mol (energy drift: 27 kcal/mol), while was lower than the 
value of −157 kcal/mol (energy drift: 25 kcal/mol) of the estrone-ESR1 
complex. Therefore, the interaction of estrone-AR complex was more 
stable comparing to estrone-ESR1 complex.

FIGURE 4

The results of MD simulations. (A) Evolutions of the RMSD, (B) Rg, (C) interaction energy values over 200  ns for the estrone-AR and estrone-ESR1, and 
(D) radial distribution function from estrone to AR and ESR1.
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In summary, this study systematically explored the interactions 
between the bioactive compounds of XBCQD and the monkeypox-
specific XBCQD targets using network pharmacological methods, 
bioinformatics analyses and molecular simulations, suggesting that 
XBCQD could have a beneficial therapeutic effect on monkeypox by 
reducing the inflammatory damage and viral replication via multiple 
pathways. In addition, the use of XBCQD on monkeypox disease was 
confirmed to be  best worked through the estrone-target AR 
interaction. By using a series of computational approaches, our study 
established the drug screening of XBCQD on monkeypox disease for 
the first time, hopefully could provide some guidance for future 
drug development.

5. Conclusion

By combining network pharmacology, molecular docking 
and MD simulation, the molecular mechanism of XBCQD in the 

treatment of monkeypox virus was systematically investigated. 
According to our results, the top 5 compounds (beta-sitosterol, 
Stigmasterol, Gamma-Aminobutyric Acid, Phytol, estrone) and 
the top  10 targets (ESR1, TP53, CASP3, JUN, TNF, MYC, 
CDKN1A, 1L1B, CCNB1, and AR) were identified. We  also 
found that XBCQD in the treatment of monkeypox virus could 
be mainly related to Hepatitis B, AGE-RAGE signal pathway of 
diabetes complications, Breast cancer, Proteoglycans in cancer, 
Human cytomegalovirus infection, MAPK signaling pathway, 
Estrogen signaling pathway, Epstein–Barr virus infection, 
Human immunodeficiency virus 1 infection and Chemical 
carcinogenesis-receptor activation. Moelcular docking showed 
that estrone-AR and estrone-ESR1 exhibited stronger binding 
affinities than the other moieties. And the estrone-AR possessed 
higher structural and interaction stabilities than the 
estrone-ESR1 with the extension of molecular simulation time. 
Our study provides a comprehensive explanation of the multi-
component, multi-target and multi-pathway intervention 

FIGURE 5

The conformations of contact residues for (A) estrone-AR and (B) estrone-ESR1 complexes, number of hydrogen bonds between the (C) estrone-AR 
and (D) estrone-ESR1 complexes, and (E) RMSF curves for AR and (F) ESR1 during the 200  ns simulations.
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mechanism of XBCQD in the treatment of monkeypox, which is 
expected to provide a basis and new insights for further 
pharmacological research.
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