105 research outputs found

    Circadian rhythms and post-transcriptional regulation in higher plants

    Get PDF
    The circadian clock of plants allows them to cope with daily changes in their environment. This is accomplished by the rhythmic regulation of gene expression, in a process that involves many regulatory steps. One of the key steps involved at the RNA level is post-transcriptional regulation, which ensures a correct control on the different amounts and types of mRNA that will ultimately define the current physiological state of the plant cell. Recent advances in the study of the processes of regulation of pre-mRNA processing, RNA turn-over and surveillance, regulation of translation, function of lncRNAs, biogenesis and function of small RNAs, and the development of bioinformatics tools have helped to vastly expand our understanding of how this regulatory step performs its role. In this work we review the current progress in circadian regulation at the post-transcriptional level research in plants. It is the continuous interaction of all the information flow control post-transcriptional processes that allow a plant to precisely time and predict daily environmental changes.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Genome wide comparative analysis of the effects of PRMT5 and PRMT4/CARM1 arginine methyltransferases on the Arabidopsis thaliana transcriptome

    Get PDF
    BACKGROUND: Methylation at arginine residues (R) is an important post-translational modification that regulates a myriad of essential cellular processes in eukaryotes, such as transcriptional regulation, RNA processing, signal transduction and DNA repair. Arginine methylation is catalyzed by a family of enzymes known as protein arginine methyltransferases (PRMTs). PRMTs are classified as Type I or Type II, depending on the position of the methyl group on the guanidine of the methylated arginine. Previous reports have linked symmetric R methylation to transcriptional repression, while asymmetric R methylation is generally associated with transcriptional activation. However, global studies supporting this conclusion are not available. RESULTS: Here we compared side by side the physiological and molecular roles of the best characterized plant PRMTs, the Type II PRMT5 and the Type I PRMT4, also known as CARM1 in mammals. We found that prmt5 and prmt4a;4b mutants showed similar alterations in flowering time, photomorphogenic responses and salt stress tolerance, while only prmt5 mutants exhibited alterations in circadian rhythms. An RNA-seq analysis revealed that expression and splicing of many differentially regulated genes was similarly enhanced or repressed by PRMT5 and PRMT4s. Furthermore, PRMT5 and PRMT4s co-regulated the expression and splicing of key regulatory genes associated with transcription, RNA processing, responses to light, flowering, and abiotic stress tolerance, being candidates to mediate the physiological alterations observed in the mutants. CONCLUSIONS: Our global analysis indicates that two of the most important Type I and Type II arginine methyltransferases, PRTM4 and PRMT5, have mostly overlapping as well as specific, but not opposite, roles in the global regulation of gene expression in plants.Fil: Hernando, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Sanchez, Sabrina Elena. University of Southern California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Mancini, Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Repression of shade-avoidance reactions by sunfleck induction of HY5 expression in Arabidopsis

    Get PDF
    The light environment provides signals that play a critical role in the control of stem growth in plants. The reduced irradiance and altered spectral composition of shade light promote stem growth compared with unfiltered sunlight. However, whereas most studies have used seedlings exposed to contrasting but constant light treatments, the natural light environment may exhibit strong fluctuations. As a result of gaps in the canopy, plants shaded by neighbours may experience sunflecks, i.e. brief periods of exposure to unfiltered sunlight. Here, we show that sunflecks are perceived by phytochromes A and B, and inhibit hypocotyl growth in Arabidopsis thaliana mainly if they occur during the final portion of the photoperiod. By using forward and reverse genetic approaches we found that ELONGATED HYPOCOTYL 5, LATE ELONGATED HYPOCOTYL, PHYTOCHROME KINASE SUBSTRATE 4 and auxin signalling are key players in this response.Fil: Sellaro, Romina Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Casal, Jorge José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentin

    Transmisión intergeneracional (agámica) de la tolerancia al estrés hídrico en Solanum tuberosum cv. Achat

    Get PDF
    Storani, L. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce (EEA Balcarce). Balcarce, Buenos Aires, Argentina.Storani, L. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Storani, L. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Yanovsky, Marcelo J. Fundación Instituto Leloir. Genómica Comparativa del Desarrollo Vegetal. Buenos Aires, Argentina.344-350Los diferentes estreses tanto bióticos como abióticos afectan diversos cultivos y causan grandes pérdidas económicas. En los últimos años se han desarrollado estrategias para obtener plantas tolerantes a los diferentes estreses abióticos, que comprenden aproximaciones biotecnológicas o de mejoramiento clásico. En este trabajo evaluamos la posibilidad de generar mayor tolerancia al estrés hídrico utilizando una aproximación de manejo que tiene en cuenta la capacidad de algunas plantas de incrementar la tolerancia a un estrés determinado si generaciones previas fueron expuestas al mismo estrés. Plantas de papa cuya “generación” anterior fue sometida a sequía respondieron de forma diferenciada a un nuevo estrés hídrico, mostrando cambios en la conductancia estomática e integridad del fotosistema ii que tuvo como consecuencia una menor reducción en el rendimiento en respuesta al estrés con respecto a plantas que no habían sido sometidas a sequía previamente. Este “efecto memoria” permitiría desarrollar plantas de papa con mayor tolerancia al estrés hídrico sin necesidad de modificación genética

    A Role for Pre-mRNA-PROCESSING PROTEIN 40C in the Control of Growth, Development, and Stress Tolerance in Arabidopsis thaliana

    Get PDF
    Because of their sessile nature, plants have adopted varied strategies for growing and reproducing in an ever-changing environment. Control of mRNA levels and pre-mRNA alternative splicing are key regulatory layers that contribute to adjust and synchronize plant growth and development with environmental changes. Transcription and alternative splicing are thought to be tightly linked and coordinated, at least in part, through a network of transcriptional and splicing regulatory factors that interact with the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. One of the proteins that has been shown to play such a role in yeast and mammals is pre-mRNA-PROCESSING PROTEIN 40 (PRP40, also known as CA150, or TCERG1). In plants, members of the PRP40 family have been identified and shown to interact with the CTD of RNA Pol II, but their biological functions remain unknown. Here, we studied the role of AtPRP40C, in Arabidopsis thaliana growth, development and stress tolerance, as well as its impact on the global regulation of gene expression programs. We found that the prp40c knockout mutants display a late-flowering phenotype under long day conditions, associated with minor alterations in red light signaling. An RNA-seq based transcriptome analysis revealed differentially expressed genes related to biotic stress responses and also differentially expressed as well as differentially spliced genes associated with abiotic stress responses. Indeed, the characterization of stress responses in prp40c mutants revealed an increased sensitivity to salt stress and an enhanced tolerance to Pseudomonas syringae pv. maculicola (Psm) infections. This constitutes the most thorough analysis of the transcriptome of a prp40 mutant in any organism, as well as the first characterization of the molecular and physiological roles of a member of the PRP40 protein family in plants. Our results suggest that PRP40C is an important factor linking the regulation of gene expression programs to the modulation of plant growth, development, and stress responses.Fil: Hernando, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: García Hourquet, Mariano. Fundación Instituto Leloir; ArgentinaFil: de Leone, María José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Careno, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Iserte, Javier Alonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Mora Garcia, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Critical Role for CCA1 and LHY in Maintaining Circadian Rhythmicity in Arabidopsis

    Get PDF
    AbstractCircadian clocks are autoregulatory, endogenous mechanisms that allow organisms, from bacteria to humans, to advantageously time a wide range of activities within 24-hr environmental cycles [1]. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are thought to be important components of the circadian clock in the model plant Arabidopsis[2–5]. The similar circadian phenotypes of lines overexpressing either CCA1 or LHY have suggested that the functions of these two transcription factors are largely overlapping. cca1-1 plants, which lack CCA1 protein, show a short-period phenotype for the expression of several genes when assayed under constant light conditions [5]. This suggests that LHY function is able to only partially compensate for the lack of CCA1 protein, resulting in a clock with a faster pace in cca1-1 plants. We have obtained plants lacking CCA1 and with LHY function strongly reduced, cca1-1 lhy-R, and show that these plants are unable to maintain sustained oscillations in both constant light and constant darkness. However, these plants exhibit some circadian function in light/dark cycles, showing that the Arabidopsis circadian clock is not entirely dependent on CCA1 and LHY activities

    Global transcriptome analysis reveals circadian control of splicing events in Arabidopsis thaliana

    Get PDF
    The circadian clock of Arabidopsis thaliana controls many physiological and molecular processes, allowing plants to anticipate daily changes in their environment. However, developing a detailed understanding of how oscillations in mRNA levels are connected to oscillations in co/post-transcriptional processes, such as splicing, has remained a challenge. Here we applied a combined approach using deep transcriptome sequencing and bioinformatics tools to identify novel circadian-regulated genes and splicing events. Using a stringent approach, we identified 300 intron retention, eight exon skipping, 79 alternative 3' splice site usage, 48 alternative 5' splice site usage, and 350 multiple (more than one event type) annotated events under circadian regulation. We also found seven and 721 novel alternative exonic and intronic events. Depletion of the circadian-regulated splicing factor AtSPF30 homologue resulted in the disruption of a subset of clock-controlled splicing events. Altogether, our global circadian RNA-seq coupled with an in silico, event-centred, splicing analysis tool offers a new approach for studying the interplay between the circadian clock and the splicing machinery at a global scale. The identification of many circadian-regulated splicing events broadens our current understanding of the level of control that the circadian clock has over this co/post-transcriptional regulatory layer.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Schlaen, Rubén Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Perez Santangelo, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Mancini, Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Genome-Wide Expression Analysis in Drosophila Reveals Genes Controlling Circadian Behavior

    Get PDF
    In Drosophila, a number of key processes such as emergence from the pupal case, locomotor activity, feeding, olfaction, and aspects of mating behavior are under circadian regulation. Although we have a basic understanding of how the molecular oscillations take place, a clear link between gene regulation and downstream biological processes is still missing. To identify clock-controlled output genes, we have used an oligonucleotide-based high-density array that interrogates gene expression changes on a whole genome level. We found genes regulating various physiological processes to be under circadian transcriptional regulation, ranging from protein stability and degradation, signal transduction, heme metabolism, detoxification, and immunity. By comparing rhythmically expressed genes in the fly head and body, we found that the clock has adapted its output functions to the needs of each particular tissue, implying that tissue-specific regulation is superimposed on clock control of gene expression. Finally, taking full advantage of the fly as a model system, we have identified and characterized a cycling potassium channel protein as a key step in linking the transcriptional feedback loop to rhythmic locomotor behavior.Fil: Ceriani, Maria Fernanda. The Scripps Research Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Hogenesch, John B.. Genomics Institute of the Novartis Research Foundation; Estados UnidosFil: Yanovsky, Marcelo Javier. The Scripps Research Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Panda, Satchidananda. Genomics Institute of the Novartis Research Foundation; Estados Unidos. The Scripps Research Institute; Estados UnidosFil: Straume, Martin. University Of Virginia; Estados UnidosFil: Kay, Steve A.. Genomics Institute of the Novartis Research Foundation; Estados Unidos. The Scripps Research Institute; Estados Unido

    Overlapping and Distinct Roles of PRR7 and PRR9 in the Arabidopsis Circadian Clock

    Get PDF
    AbstractThe core mechanism of the circadian oscillators described to date rely on transcriptional negative feedback loops with a delay between the negative and the positive components [1–3]. In plants, the first suggested regulatory loop involves the transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) and the pseudo-response regulator TIMING OF CAB EXPRESSION 1 (TOC1/PRR1)[4]. TOC1 is a member of the Arabidopsis circadian-regulated PRR gene family [5,6]. Analysis of single and double mutants in PRR7 and PRR9 indicates that these morning-expressed genes play a dual role in the circadian clock, being involved in the transmission of light signals to the clock and in the regulation of the central oscillator. Furthermore, CCA1 and LHY had a positive effect on PRR7 and PRR9 expression levels, indicating that they might form part of an additional regulatory feedback loop. We propose that the Arabidopsis circadian oscillator is composed of several interlocking positive and negative feedback loops, a feature of clock regulation that appears broadly conserved between plants, fungi, and animals

    Comparative genomic analysis of light-regulated transcripts in the Solanaceae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plants use different light signals to adjust their growth and development to the prevailing environmental conditions. Studies in the model species <it>Arabidopsis thaliana </it>and rice indicate that these adjustments are mediated by large changes in the transcriptome. Here we compared transcriptional responses to light in different species of the Solanaceae to investigate common as well as species-specific changes in gene expression.</p> <p>Results</p> <p>cDNA microarrays were used to identify genes regulated by a transition from long days (LD) to short days (SD) in the leaves of potato and tobacco plants, and by phytochrome B (phyB), the photoreceptor that represses tuberization under LD in potato. We also compared transcriptional responses to photoperiod in <it>Nicotiana tabacum </it>Maryland Mammoth (MM), which flowers only under SD, with those of <it>Nicotiana sylvestris</it>, which flowers only under LD conditions. Finally, we identified genes regulated by red compared to far-red light treatments that promote germination in tomato.</p> <p>Conclusion</p> <p>Most of the genes up-regulated in LD were associated with photosynthesis, the synthesis of protective pigments and the maintenance of redox homeostasis, probably contributing to the acclimatization to seasonal changes in irradiance. Some of the photoperiodically regulated genes were the same in potato and tobacco. Others were different but belonged to similar functional categories, suggesting that conserved as well as convergent evolutionary processes are responsible for physiological adjustments to seasonal changes in the Solanaceae. A β-ZIP transcription factor whose expression correlated with the floral transition in <it>Nicotiana </it>species with contrasting photoperiodic responses was also regulated by photoperiod and phyB in potato, and is a candidate gene to act as a general regulator of photoperiodic responses. Finally, <it>GIGANTEA</it>, a gene that controls flowering time in <it>Arabidopsis thaliana </it>and rice, was regulated by photoperiod in the leaves of potato and tobacco and by red compared to far-light treatments that promote germination in tomato seeds, suggesting that a conserved light signaling cascade acts across developmental contexts and species.</p
    corecore