65 research outputs found

    Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide

    Get PDF
    BACKGROUND:Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. METHODOLOGY/PRINCIPAL FINDINGS:We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. CONCLUSION /SIGNIFICANCE:This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence

    Co-occurrence of Point Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Aedes aegypti Populations in Myanmar

    Get PDF
    Background:Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar.Methodology/Principal Findings:We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study.Conclusions/Significance:Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti

    Pyriproxyfen-Treated Polypropylene Sheets and Resting Boxes for Controlling Mosquitoes in Livestock Operations

    No full text
    Many insect vector species of medical and veterinary importance are found abundantly in areas where animals are held. In these areas, they often rest for a period of time on objects around the animals both before and after blood feeding. However, the use of neurotoxic insecticides for vector control is not advised for use in such shelters as these chemicals can pose hazards to animals. The present study evaluated the efficacy of pyriproxyfen (PPF), an insect growth regulator, applied to polypropylene sheets and resting boxes on the reproductivity of mosquitoes found in animal shelters in Chiang Mai, Thailand. The sheets sprayed with 666 mg PPF/m2 were set on the inner wall of a cowshed and kept in place for 3 h (6.00 to 9.00 pm). During this time, fully blood-fed female mosquitoes that landed and remained continuously on the sheets for 5, 10, and 20 min were collected. The results, involving Anopheles subpictus, An. vagus, Culex gelidus, Cx. tritaeniorhynchus, and Cx. vishnui, revealed significant reductions in oviposition rates, egg hatchability, pupation, and adult emergence in the PPF-treated groups compared to the control groups. Adult emergence rates were reduced to 85.6⁻94.9% and 95.5⁻100% in those exposed for 10 and 20 min, respectively. The sheets retained their effectiveness for three months. The PPF-treated (666 mg/m2) resting boxes (35 × 35 × 55 cm) were placed overnight at a chicken farm where Cx. quinquefasciatus predominated. Blood-fed mosquitoes were collected in the morning and reared in the laboratory. Oviposition rates were reduced by 71.7% and adult emergence was reduced by 97.8% compared to the controls. PPF residual spray on surface materials in animal sheds is a potential method for controlling mosquitoes. Further studies are needed to evaluate the impact of PPF-treated materials on wild populations

    Investigation of Relative Development and Reproductivity Fitness Cost in Three Insecticide-Resistant Strains of Aedes aegypti from Thailand

    No full text
    Knockdown resistance (kdr) and detoxification enzymes are major resistance mechanisms in insecticide-resistant Aedes aegypti throughout the world. Persistence of the resistance phenotype is associated with high fitness of resistance alleles in the absence of insecticide pressure. This study determined the relative fitness cost of three insecticide-resistant strains of Aedes aegypti—PMD, PMD-R, and UPK-R—and a hybrid under similar laboratory conditions in the absence of insecticide. The PMD strain is resistant to DDT with no kdr alleles; the PMD-R is resistant to DDT and permethrin with 1534C homozygous kdr alleles; and UPK-R is resistant to DDT, permethrin, and deltamethrin with 989P + 1016G homozygous alleles. The DDT-resistant PMD strain had the highest fitness compared with the two DDT/pyrethroid-resistant strains (PMD-R and UPK-R) and hybrid. Consistent fitness costs were observed in the DDT/pyrethroid-resistant strains and hybrid, including shorter wing length, reduced egg hatchability, shorter female lifespan, and shorter viability of eggs after storage, whereas no effect was observed on blood feeding rate. In addition, reduced egg production was observed in the PMD-R strain and prolonged developmental time was seen in the UPK-R strain. The corresponding hybrid that is heterozygous for kdr alleles was fitter than either of the homozygous mutant genotypes. This is in accordance with the high frequency of heterozygous genotypes observed in natural populations of Ae. aegypti in Chiang Mai city
    • …
    corecore