133 research outputs found

    Analyses of integrated EPID images for on-treatment quality assurance to account for interfractional variations in volumetric modulated arc therapy

    Get PDF
    Purpose: To investigate the effects of interfractional variation, such as anatomical changes and setup errors, on dose delivery during treatment for prostate cancer (PC) and head and neck cancer (HNC) by courses of volumetric modulated arc therapy (VMAT) aided by on‐treatment electronic portal imaging device (EPID) images. Methods: Seven patients with PC and 20 patients with HNC who had received VMAT participated in this study. After obtaining photon fluence at the position of the EPID for each treatment arc from on‐treatment integrated EPID images, we calculated the differences between the fluence for the first fraction and each subsequent fraction for each arc. The passing rates were investigated based on a tolerance level of 3% of the maximum fluence during the treatment courses and the correlations between the passing rates and anatomical changes. Results: In PC, the median and lowest passing rates were 99.8% and 95.2%, respectively. No correlations between passing rates and interfractional variation were found. In HNC, the median passing rate of all fractions was 93.0%, and the lowest passing rate was 79.6% during the 35th fraction. Spearman’s correlation coefficients between the passing rates and changes in weight or neck volume were − 0.77 and − 0.74, respectively. Conclusions: Analyses of the on‐treatment EPID images facilitates estimates of the interfractional anatomical variation in HNC patients during VMAT and thus improves assessments of the need for re‐planning or adaptive strategies and the timing thereof

    Tenomodulin expression in the periodontal ligament enhances cellular adhesion.

    Get PDF
    Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain

    Initial Results for Science Instruments Onboard EQUULEUS During the Cruising Phase Toward the Earth Moon Lagrange Point

    Get PDF
    EQUULEUS (EQUilibriUm Lunar-Earth point 6U Spacecraft) is a spacecraft to explore the cis-lunar region including the Earth-Moon Lagrange point L2 (EML2). The spacecraft is being jointly developed by JAXA, the University of Tokyo, and several other universities in Japan. After being launched into a lunar transfer orbit by NASA\u27s SLS (Space Launch System) Artemis-1 on November 16, 2022, the spacecraft successfully performed a first Delta-V and a trajectory correction maneuver. This enabled a precise lunar flyby and successful insertion into the orbit toward EML2. Although the size of EQUULEUS is only 6U CubeSat, the spacecraft carries three different science instruments. The spacecraft can effectively demonstrate science missions during and after the flight to EML2 by using these instruments; the plasmasphere observation around the Earth by PHOENIX, the space dust flux detection in the cis-lunar region by CLOTH, and the lunar impact flash (LIF) observation at the far side of the moon by DELPHINUS. All instruments have already completed its checkout. During the cruising phase, PHOENIX conducted Earth observations and successfully identified the Earth\u27s plasmashere. CLOTH has started regular standby operations. DELPHINUS obtained impressive images such as the far side of the Moon at lunar closest approach and long-period comet, Comet ZTF. This poster presents the details of these scientific missions and the initial checkout and observation results of the science instruments

    Effect of Boron Incorporation on Slow Interface Traps in SiO2/4H-SiC Structures

    Get PDF
    The reason for the effective removal of interface traps in SiO2/4H-SiC (0001) structures by boron (B) incorporation was investigated by employing low-temperature electrical measurements. Low-temperature capacitance–voltage and thermal dielectric relaxation current measurements revealed that the density of electrons captured in slow interface traps in B-incorporated oxide is lower than that in dry and NO-annealed oxides. These results suggest that near-interface traps can be removed by B incorporation, which is considered to be an important reason for the increase in the field-effect mobility of 4H-SiC metal–oxide–semiconductor devices. A model for the passivation mechanism is proposed that takes account of stress relaxation during thermal oxidation

    Insight into enhanced field-effect mobility of 4H-SiC MOSFET with Ba incorporation studied by Hall effect measurements

    Get PDF
    Improved performance in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) by incorporating Ba into insulator/SiC interfaces was investigated by using a combination of the Hall effect and split capacitance-voltage measurements. It was found that a moderate annealing temperature causes negligible metal-enhanced oxidation, which is rather beneficial for increments in field-effect mobility (μFE) of the FETs together with suppressed surface roughness of the gate oxides. The combined method revealed that, while severe μFE degradation in SiC-MOSFETs is caused by a reduction of effective mobile carriers due to carrier trapping at the SiO2/SiC interfaces, Ba incorporation into the interface significantly increases mobile carrier density with greater impact than the widely-used nitrided interfaces

    bFGF Regulates PI3-Kinase-Rac1-JNK Pathway and Promotes Fibroblast Migration in Wound Healing

    Get PDF
    Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration
    corecore