13,370 research outputs found

    On h h -transforms of one-dimensional diffusions stopped upon hitting zero

    Get PDF
    For a one-dimensional diffusion on an interval for which 0 is the regular-reflecting left boundary, three kinds of conditionings to avoid zero are studied. The limit processes are h h -transforms of the process stopped upon hitting zero, where h h 's are the ground state, the scale function, and the renormalized zero-resolvent. Several properties of the h h -transforms are investigated

    N=2 Boundary conditions for non-linear sigma models and Landau-Ginzburg models

    Get PDF
    We study N=2 nonlinear two dimensional sigma models with boundaries and their massive generalizations (the Landau-Ginzburg models). These models are defined over either Kahler or bihermitian target space manifolds. We determine the most general local N=2 superconformal boundary conditions (D-branes) for these sigma models. In the Kahler case we reproduce the known results in a systematic fashion including interesting results concerning the coisotropic A-type branes. We further analyse the N=2 superconformal boundary conditions for sigma models defined over a bihermitian manifold with torsion. We interpret the boundary conditions in terms of different types of submanifolds of the target space. We point out how the open sigma models correspond to new types of target space geometry. For the massive Landau-Ginzburg models (both Kahler and bihermitian) we discuss an important class of supersymmetric boundary conditions which admits a nice geometrical interpretation.Comment: 48 pages, latex, references and minor comments added, the version to appear in JHE

    T-duality for the sigma model with boundaries

    Full text link
    We derive the most general local boundary conditions necessary for T-duality to be compatible with superconformal invariance of the two-dimensional N=1 supersymmetric nonlinear sigma model with boundaries. To this end, we construct a consistent gauge invariant parent action by gauging a U(1) isometry, with and without boundary interactions. We investigate the behaviour of the boundary conditions under T-duality, and interpret the results in terms of D-branes.Comment: 48 pages, LaTeX, v2: typos corrected, references adde

    Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    Full text link
    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide bandwidth (17.1-18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1-18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode
    corecore