189 research outputs found

    KEY FACTORS FOR THE SEPARATION OF SILICON AND IRON DURING PHOSPHORUS RECOVERY FROM SLAG DISCHARGED FROM THE DOUBLE-SLAG REFINING PROCESS

    Get PDF
    In the present study, we developed a technology for concentrating and recovering phosphorus from slag-like phosphorus-containing unused resources and applied it to slag discharged during the latest steelmaking process, that is, double-slag refining process (DRP). The technology we developed consists of the following four processes: Process (1) is the initial acid elution; Process (2) involves alkali precipitation; Process (3) is the second acid elution; and, Process (4) utilizes ion-exchange. In Process (1), the addition of DPR slag to 0.5 M of a nitric acid solution for 24 min resulted in sufficient phosphorus dissolution. In Process (2), ammonia was added to the dissolved solution, and phosphorus was precipitated with high efficiency. The timing of the addition of ammonia significantly influenced the removal of silicon and iron, which would have been inconvenient to accomplish in subsequent processes. In Process (3), the precipitation obtained in Process (2) was re-dissolved in a nitric acid solution. The dissolution of phosphorus together with other elements progressed sufficiently, and we confirmed that silicon could be completely separated as silica by using high-concentration nitric acid at this stage. The fact that silicon could be removed during Process (3) was an important finding, since silicon could not have been separated in the Process (4). In Process (4), by passing the phosphorus-containing solution obtained in Process (3) through an ion exchange resin, elements other than phosphorus and silicon could be removed, which confirms that the range of applications for this technology could be expanded

    β-Adrenergic Receptor-PI3K Signaling Crosstalk in Mouse Heart: Elucidation of Immediate Downstream Signaling Cascades

    Get PDF
    Sustained β-adrenergic receptors (βAR) activation leads to cardiac hypertrophy and prevents left ventricular (LV) atrophy during LV unloading. The immediate signaling pathways downstream from βAR stimulation, however, have not been well investigated. The current study was to examine the early cardiac signaling mechanism(s) following βAR stimulation. In adult C57BL/6 mice, acute βAR stimulation induced significant increases in PI3K activity and activation of Akt and ERK1/2 in the heart, but not in lungs or livers. In contrast, the same treatment did not elicit these changes in β1/β2AR double knockout mice. We further showed the specificity of β2AR in this crosstalk as treatment with formoterol, a β2AR-selective agonist, but not dobutamine, a predominantly β1AR agonist, activated cardiac Akt and ERK1/2. Acute βAR stimulation also significantly increased the phosphorylation of mTOR (the mammalian target of rapamycin), P70S6K, ribosomal protein S6, GSK-3α/β (glycogen synthase kinase-3α/β), and FOXO1/3a (the forkhead box family of transcription factors 1 and 3a). Moreover, acute βAR stimulation time-dependently decreased the mRNA levels of the muscle-specific E3 ligases atrogin-1 and muscle ring finger protein-1 (MuRF1) in mouse heart. Our results indicate that acute βAR stimulation in vivo affects multiple cardiac signaling cascades, including the PI3K signaling pathway, ERK1/2, atrogin-1 and MuRF1. These data 1) provide convincing evidence for the crosstalk between βAR and PI3K signaling pathways; 2) confirm the β2AR specificity in this crosstalk in vivo; and 3) identify novel signaling factors involved in cardiac hypertrophy and LV unloading. Understanding of the intricate interplay between β2AR activation and these signaling cascades should provide critical clues to the pathogenesis of cardiac hypertrophy and enable identification of targets for early clinical interaction of cardiac lesions

    Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes

    Get PDF
    Dual specificity phosphatase 6 (DUSP6) is a protein phosphatase that deactivates extracellular-signal-regulated kinase (ERK). Since the ovarian cancer biomarker human epididymis protein 4 (HE4) interacts with the ERK pathway, we sought to determine the relationship between DUSP6 and HE4 and elucidate DUSP6’s role in epithelial ovarian cancer (EOC). Viability assays revealed a significant decrease in cell viability with pharmacological inhibition of DUSP6 using (E/Z)-BCI hydrochloride in ovarian cancer cells treated with carboplatin or paclitaxel, compared to treatment with either agent alone. Quantitative PCR was used to evaluate levels of ERK pathway response genes to BCI in combination with recombinant HE4 (rHE4), carboplatin, and paclitaxel. Expression of EGR1, a promoter of apoptosis, was higher in cells co-treated with BCI and paclitaxel or carboplatin than in cells treated with chemotherapeutic agents alone, while expression of the proto-oncogene c-JUN was decreased with co-treatment. The effect of BCI on the expression of these two genes opposed that of rHE4. Pathway focused quantitative PCR also revealed suppression of ERBB3 in cells co-treated with BCI plus carboplatin or paclitaxel. Finally, expression levels of DUSP6 in EOC tissue were evaluated by immunohistochemistry, revealing significantly increased levels of DUSP6 in serous EOC tissue compared to adjacent normal tissue. A positive correlation between HE4 and DUSP6 levels was determined by Spearman Rank correlation. In conclusion, DUSP6 inhibition sensitizes ovarian cancer cells to chemotherapeutic agents and alters gene expression of ERK response genes, suggesting that DUSP6 could plausibly function as a novel therapeutic target to reduce chemoresistance in EOC

    Septin-2 is overexpressed in epithelial ovarian cancer and mediates proliferation via regulation of cellular metabolic proteins

    Get PDF
    Epithelial Ovarian Cancer (EOC) is associated with dismal survival rates due to the fact that patients are frequently diagnosed at an advanced stage and eventually become resistant to traditional chemotherapeutics. Hence, there is a crucial need for new and innovative therapies. Septin-2, a member of the septin family of GTP binding proteins, has been characterized in EOC for the first time and represents a potential future target. Septin-2 was found to be overexpressed in serous and clear cell human patient tissue compared to benign disease. Stable septin-2 knockdown clones developed in an ovarian cancer cell line exhibited a significant decrease in proliferation rates. Comparative label-free proteomic analysis of septin-2 knockdown cells revealed differential protein expression of pathways associated with the TCA cycle, acetyl CoA, proteasome and spliceosome. Further validation of target proteins indicated that septin-2 plays a predominant role in post-transcriptional and translational modifications as well as cellular metabolism, and suggested the potential novel role of septin-2 in promoting EOC tumorigenesis through these mechanisms

    Human Epididymis Secretory Protein 4 (HE4) Compromises Cytotoxic Mononuclear Cells via Inducing Dual Specificity Phosphatase 6

    Get PDF
    While selective overexpression of serum clinical biomarker Human epididymis secretory protein 4 (HE4) is indicative of ovarian cancer tumorigenesis, much is still known about the mechanistic role of the HE4 gene or gene product. Here, we examine the role of the secretory glycoprotein HE4 in ovarian cancer immune evasion. Through modified subtractive hybridization analyses of human peripheral blood mononuclear cells (PBMCs), we have characterized gene targets of HE4 and established a preliminary mechanism of HE4-mediated immune failure in ovarian tumors. Dual specificity phosphatase 6 (DUSP6) emerged as the most upregulated gene in PBMCs upon in vitro exposure to HE4. DUSP6 was found to be upregulated in CD8+ cells and CD56+ cells. HE4 exposure reduced Erk1/2 phosphorylation specifically in these cell populations and the effect was erased by co-incubation with a DUSP6 inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI). In co-culture with PBMCs, HE4-silenced SKOV3 human ovarian cancer cells exhibited enhanced proliferation upon exposure to external HE4, while this effect was partially attenuated by adding BCI to the culture. Additionally, the reversal effects of BCI were erased in the co-culture with CD8+ / CD56+ cell deprived PBMCs. Taken together, these findings show that HE4 enhances tumorigenesis of ovarian cancer by compromising cytotoxic CD8+ and CD56+ cells through upregulation of self-produced DUSP6

    Early gastric cancer detection in high-risk patients: a multicentre randomised controlled trial on the effect of second-generation narrow band imaging

    Get PDF
    Objective: Early detection of gastric cancer has been the topic of major efforts in high prevalence areas. Whether advanced imaging methods, such as second-generation narrow band imaging (2G-NBI) can improve early detection, is unknown. Design: This open-label, randomised, controlled tandem trial was conducted in 13 hospitals. Patients at increased risk for gastric cancer were randomly assigned to primary white light imaging (WLI) followed by secondary 2G-NBI (WLI group: n=2258) and primary 2G-NBI followed by secondary WLI (2G-NBI group: n=2265) performed by the same examiner. Suspected early gastric cancer (EGC) lesions in both groups were biopsied. Primary endpoint was the rate of EGC patients in the primary examination. The main secondary endpoint was the positive predictive value (PPV) for EGC in suspicious lesions detected (primary examination). Results: The overall sensitivity of primary endoscopy for the detection of EGC in high-risk patients was only 75% and should be improved. 2G-NBI did not increase EGC detection rate over conventional WLI. The impact of a slightly better PPV of 2G-NBI has to be evaluated further. Trial registration number: UMIN000014503

    Assessment of Outcomes From 1-Year Surveillance After Detection of Early Gastric Cancer Among Patients at High Risk in Japan

    Get PDF
    [Importance] Single endoscopic examination often misses early gastric cancer (GC), even when both high-definition white light imaging and narrow-band imaging are used. It is unknown whether new GC can be detected approximately 1 year after intensive index endoscopic examination. [Objective] To examine whether new GC can be detected approximately 1 year after intensive index endoscopic examination using both white light and narrow-band imaging. [Design, Setting, and Participants] This case-control study was a preplanned secondary analysis of a randomized clinical trial involving 4523 patients with a high risk of GC who were enrolled between October 1, 2014, and September 22, 2017. Data were analyzed from December 26, 2019, to April 21, 2021. Participants in the clinical trial received index endoscopy to detect early GC via 2 examinations of the entire stomach using white light and narrow-band imaging. The duration of follow-up was 15 months. The secondary analysis included 107 patients with newly detected GC (case group) and 107 matched patients without newly detected GC (control group) within 15 months after index endoscopy. [Interventions] Surveillance endoscopy was scheduled between 9 and 15 months after index endoscopy. If new lesions suspected of being early GC were detected during surveillance endoscopy, biopsies were obtained to confirm the presence of cancer. [Main Outcomes and Measures] The primary end point was the rate of new GC detected within 15 months after index endoscopy. The main secondary end point was identification of risk factors associated with new GC detected within 15 months after index endoscopy. [Results] Among 4523 patients (mean [SD] age, 70.6 [7.5] years; 3527 men [78.0%]; all of Japanese ethnicity) enrolled in the clinical trial, 4472 received index endoscopy; the rate of early GC detected on index endoscopy was 3.0% (133 patients). Surveillance endoscopy was performed in 4146 of 4472 patients (92.7%) who received an index endoscopy; the rate of new GC detected within 15 months after index endoscopy was 2.6% (107 patients). Among 133 patients for whom early GC was detected during index endoscopy, 110 patients (82.7%) received surveillance endoscopy within 15 months after index endoscopy; the rate of newly detected GC was 10.9% (12 patients). For the secondary analysis of risk factors associated with newly detected GC, characteristics were well balanced between the 107 patients included in the case group vs the 107 patients included in the matched control group (mean [SD] age, 71.7 [7.2] years vs 71.8 [7.0] years; 94 men [87.9%] in each group; 82 patients [76.6%] vs 87 patients [81.3%] with a history of gastric neoplasm). Multivariate analysis revealed that the presence of open-type atrophic gastritis (odds ratio, 6.00; 95% CI, 2.25-16.01; P < .001) and early GC detection by index endoscopy (odds ratio, 4.67; 95% CI, 1.08-20.21; P = .04) were independent risk factors associated with new GC detection. [Conclusions and Relevance] In this study, the rate of new GC detected by surveillance endoscopy approximately 1 year after index endoscopy was similar to that of early GC detected by index endoscopy. These findings suggest that 1-year surveillance is warranted for patients at high risk of GC

    Discharge Synchrony during the Transition of Behavioral Goal Representations Encoded by Discharge Rates of Prefrontal Neurons

    Get PDF
    To investigate the temporal relationship between synchrony in the discharge of neuron pairs and modulation of the discharge rate, we recorded the neuronal activity of the lateral prefrontal cortex of monkeys performing a behavioral task that required them to plan an immediate goal of action to attain a final goal. Information about the final goal was retrieved via visual instruction signals, whereas information about the immediate goal was generated internally. The synchrony of neuron pair discharges was analyzed separately from changes in the firing rate of individual neurons during a preparatory period. We focused on neuron pairs that exhibited a representation of the final goal followed by a representation of the immediate goal at a later stage. We found that changes in synchrony and discharge rates appeared to be complementary at different phases of the behavioral task. Synchrony was maximized during a specific phase in the preparatory period corresponding to a transitional stage when the neuronal activity representing the final goal was replaced with that representing the immediate goal. We hypothesize that the transient increase in discharge synchrony is an indication of a process that facilitates dynamic changes in the prefrontal neural circuits in order to undergo profound state changes

    Identification of a Vitamin-D Receptor Antagonist, MeTC7, which Inhibits the Growth of Xenograft and Transgenic Tumors In Vivo

    Get PDF
    Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (5), which can be synthesized from 7-dehydrocholesterol (6) in two steps, inhibits VDR selectively, suppresses the viability of cancer cell-lines, and reduces the growth of the spontaneous transgenic TH-MYCN neuroblastoma and xenografts in vivo. The VDR selectivity of 5 against RXRα and PPAR-γ was confirmed, and docking studies using VDR-LBD indicated that 5 induces major changes in the binding motifs, which potentially result in VDR antagonistic effects. These data highlight the therapeutic benefits of targeting VDR for the treatment of malignancies and demonstrate the creation of selective VDR antagonists that are easy to synthesize

    Efficacy of a Non-Hypercalcemic Vitamin-D2 Derived Anti-Cancer Agent (MT19c) and Inhibition of Fatty Acid Synthesis in an Ovarian Cancer Xenograft Model

    Get PDF
    BACKGROUND:Numerous vitamin-D analogs exhibited poor response rates, high systemic toxicities and hypercalcemia in human trials to treat cancer. We identified the first non-hypercalcemic anti-cancer vitamin D analog MT19c by altering the A-ring of ergocalciferol. This study describes the therapeutic efficacy and mechanism of action of MT19c in both in vitro and in vivo models. METHODOLOGY/PRINCIPAL FINDING:Antitumor efficacy of MT19c was evaluated in ovarian cancer cell (SKOV-3) xenografts in nude mice and a syngenic rat ovarian cancer model. Serum calcium levels of MT19c or calcitriol treated animals were measured. In-silico molecular docking simulation and a cell based VDR reporter assay revealed MT19c-VDR interaction. Genomewide mRNA analysis of MT19c treated tumors identified drug targets which were verified by immunoblotting and microscopy. Quantification of cellular malonyl CoA was carried out by HPLC-MS. A binding study with PPAR-Y receptor was performed. MT19c reduced ovarian cancer growth in xenograft and syngeneic animal models without causing hypercalcemia or acute toxicity. MT19c is a weak vitamin-D receptor (VDR) antagonist that disrupted the interaction between VDR and coactivator SRC2-3. Genome-wide mRNA analysis and western blot and microscopy of MT19c treated xenograft tumors showed inhibition of fatty acid synthase (FASN) activity. MT19c reduced cellular levels of malonyl CoA in SKOV-3 cells and inhibited EGFR/phosphoinositol-3kinase (PI-3K) activity independently of PPAR-gamma protein. SIGNIFICANCE:Antitumor effects of non-hypercalcemic agent MT19c provide a new approach to the design of vitamin-D based anticancer molecules and a rationale for developing MT19c as a therapeutic agent for malignant ovarian tumors by targeting oncogenic de novo lipogenesis
    corecore