69 research outputs found

    Magnetic resonance angiography signal intensity as a marker of hemodynamic impairment in intracranial arterial stenosis.

    Get PDF
    BackgroundIntracranial arterial stenosis (ICAS) is the predominant cause of ischemic stroke and transient ischemic attack in Asia. Change of signal intensities (SI) across an ICAS on magnetic resonance angiography (MRA) may reflect its hemodynamic severity.MethodsIn-patients with a symptomatic single ICAS detected on 3D time-of-flight MRA were recruited from 2 hospitals. Baseline and 1-year follow-up data were collected. Signal intensity ratio (SIR) [ =  (mean post-stenotic SI -mean background SI)/(mean pre-stenotic SI - mean background SI)] was evaluated on baseline MRA to represent change of SIs across an ICAS. Acute infarct volume was measured on baseline diffusion-weighted images (DWI). Relationships between SIR and baseline characteristics as well as 1y outcomes were evaluated.ResultsThirty-six subjects (86.1% males, mean age 55.0) were recruited. Overall, mean SIR was 0.84±0.23. Mean SIRs were not significantly different between the 23 (63.9%) anatomically severe stenoses and the 13 (36.1%) anatomically moderate stenoses (0.80±0.23 versus 0.92±0.21, p = 0.126). SIR was significantly, linearly and negatively correlated to acute infarct volume on DWI (Spearman correlation coefficient -0.471, p = 0.011). Two patients (5.6%) had recurrent ischemic strokes at 1y, not related to SIR values.ConclusionsChange of signal intensities across an ICAS on MRA may reflect its hemodynamic and functional severity. Future studies are warranted to further verify the relationships between this index and prognosis of patients with symptomatic ICAS

    Computational fluid dynamics modeling of symptomatic intracranial atherosclerosis may predict risk of stroke recurrence.

    Get PDF
    BackgroundPatients with symptomatic intracranial atherosclerosis (ICAS) of ≄ 70% luminal stenosis are at high risk of stroke recurrence. We aimed to evaluate the relationships between hemodynamics of ICAS revealed by computational fluid dynamics (CFD) models and risk of stroke recurrence in this patient subset.MethodsPatients with a symptomatic ICAS lesion of 70-99% luminal stenosis were screened and enrolled in this study. CFD models were reconstructed based on baseline computed tomographic angiography (CTA) source images, to reveal hemodynamics of the qualifying symptomatic ICAS lesions. Change of pressures across a lesion was represented by the ratio of post- and pre-stenotic pressures. Change of shear strain rates (SSR) across a lesion was represented by the ratio of SSRs at the stenotic throat and proximal normal vessel segment, similar for the change of flow velocities. Patients were followed up for 1 year.ResultsOverall, 32 patients (median age 65; 59.4% males) were recruited. The median pressure, SSR and velocity ratios for the ICAS lesions were 0.40 (-2.46-0.79), 4.5 (2.2-20.6), and 7.4 (5.2-12.5), respectively. SSR ratio (hazard ratio [HR] 1.027; 95% confidence interval [CI], 1.004-1.051; P = 0.023) and velocity ratio (HR 1.029; 95% CI, 1.002-1.056; P = 0.035) were significantly related to recurrent territorial ischemic stroke within 1 year by univariate Cox regression, respectively with the c-statistics of 0.776 (95% CI, 0.594-0.903; P = 0.014) and 0.776 (95% CI, 0.594-0.903; P = 0.002) in receiver operating characteristic analysis.ConclusionsHemodynamics of ICAS on CFD models reconstructed from routinely obtained CTA images may predict subsequent stroke recurrence in patients with a symptomatic ICAS lesion of 70-99% luminal stenosis

    Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients With Intracranial Arterial Stenosis

    Get PDF
    BACKGROUND: Newtonian fluid model has been commonly applied in simulating cerebral blood flow in intracranial atherosclerotic stenosis (ICAS) cases using computational fluid dynamics (CFD) modeling, while blood is a shear-thinning non-Newtonian fluid. We aimed to investigate the differences of cerebral hemodynamic metrics quantified in CFD models built with Newtonian and non-Newtonian fluid assumptions, in patients with ICAS. METHODS: We built a virtual artery model with an eccentric 75% stenosis and performed static CFD simulation. We also constructed CFD models in three patients with ICAS of different severities in the luminal stenosis. We performed static simulations on these models with Newtonian and two non-Newtonian (Casson and Carreau-Yasuda) fluid models. We also performed transient simulations on another patient-specific model. We measured translesional pressure ratio (PR) and wall shear stress (WSS) values in all CFD models, to reflect the changes in pressure and WSS across a stenotic lesion. In all the simulations, we compared the PR and WSS values in CFD models derived with Newtonian, Casson, and Carreau-Yasuda fluid assumptions. RESULTS: In all the static and transient simulations, the Newtonian/non-Newtonian difference on PR value was negligible. As to WSS, in static models (virtual and patient-specific), the rheological difference was not obvious in areas with high WSS, but observable in low WSS areas. In the transient model, the rheological difference of WSS areas with low WSS was enhanced, especially during diastolic period. CONCLUSION: Newtonian fluid model could be applicable for PR calculation, but caution needs to be taken when using the Newtonian assumption in simulating WSS especially in severe ICAS cases

    Early Identification of High-Risk TIA or Minor Stroke Using Artificial Neural Network

    Get PDF
    Background and Purpose: The risk of recurrent stroke following a transient ischemic attack (TIA) or minor stroke is high, despite of a significant reduction in the past decade. In this study, we investigated the feasibility of using artificial neural network (ANN) for risk stratification of TIA or minor stroke patients.Methods: Consecutive patients with acute TIA or minor ischemic stroke presenting at a tertiary hospital during a 2-year period were recruited. We collected demographics, clinical and imaging data at baseline. The primary outcome was recurrent ischemic stroke within 1 year. We developed ANN models to predict the primary outcome. We randomly down-sampled patients without a primary outcome to 1:1 match with those with a primary outcome to mitigate data imbalance. We used a 5-fold cross-validation approach to train and test the ANN models to avoid overfitting. We employed 19 independent variables at baseline as the input neurons in the ANN models, using a learning algorithm based on backpropagation to minimize the loss function. We obtained the sensitivity, specificity, accuracy and the c statistic of each ANN model from the 5 rounds of cross-validation and compared that of support vector machine (SVM) and NaĂŻve Bayes classifier in risk stratification of the patients.Results: A total of 451 acute TIA or minor stroke patients were enrolled. Forty (8.9%) patients had a recurrent ischemic stroke within 1 year. Another 40 patients were randomly selected from those with no recurrent stroke, so that data from 80 patients in total were used for 5 rounds of training and testing of ANN models. The median sensitivity, specificity, accuracy and c statistic of the ANN models to predict recurrent stroke at 1 year was 75%, 75%, 75%, and 0.77, respectively. ANN model outperformed SVM and NaĂŻve Bayes classifier in our dataset for predicting relapse after TIA or minor stroke.Conclusion: This pilot study indicated that ANN may yield a novel and effective method in risk stratification of TIA and minor stroke. Further studies are warranted for verification and improvement of the current ANN model

    Clinical associations and prognostic value of MRI-visible perivascular spaces in patients with ischemic stroke or TIA: a pooled analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: Visible perivascular spaces are an MRI marker of cerebral small vessel disease and might predict future stroke. However, results from existing studies vary. We aimed to clarify this through a large collaborative multicenter analysis. METHODS: We pooled individual patient data from a consortium of prospective cohort studies. Participants had recent ischemic stroke or transient ischemic attack (TIA), underwent baseline MRI, and were followed up for ischemic stroke and symptomatic intracranial hemorrhage (ICH). Perivascular spaces in the basal ganglia (BGPVS) and perivascular spaces in the centrum semiovale (CSOPVS) were rated locally using a validated visual scale. We investigated clinical and radiologic associations cross-sectionally using multinomial logistic regression and prospective associations with ischemic stroke and ICH using Cox regression. RESULTS: We included 7,778 participants (mean age 70.6 years; 42.7% female) from 16 studies, followed up for a median of 1.44 years. Eighty ICH and 424 ischemic strokes occurred. BGPVS were associated with increasing age, hypertension, previous ischemic stroke, previous ICH, lacunes, cerebral microbleeds, and white matter hyperintensities. CSOPVS showed consistently weaker associations. Prospectively, after adjusting for potential confounders including cerebral microbleeds, increasing BGPVS burden was independently associated with future ischemic stroke (versus 0-10 BGPVS, 11-20 BGPVS: HR 1.19, 95% CI 0.93-1.53; 21+ BGPVS: HR 1.50, 95% CI 1.10-2.06; = 0.040). Higher BGPVS burden was associated with increased ICH risk in univariable analysis, but not in adjusted analyses. CSOPVS were not significantly associated with either outcome. DISCUSSION: In patients with ischemic stroke or TIA, increasing BGPVS burden is associated with more severe cerebral small vessel disease and higher ischemic stroke risk. Neither BGPVS nor CSOPVS were independently associated with future ICH

    Impact of Cerebral Microbleeds in Stroke Patients with Atrial Fibrillation

    Get PDF
    OBJECTIVES: Cerebral microbleeds are associated with the risks of ischemic stroke and intracranial hemorrhage, causing clinical dilemmas for antithrombotic treatment decisions. We aimed to evaluate the risks of intracranial hemorrhage and ischemic stroke associated with microbleeds in patients with atrial fibrillation treated with Vitamin K antagonists, direct oral anticoagulants, antiplatelets, and combination therapy (i.e. concurrent oral anticoagulant and antiplatelet) METHODS: We included patients with documented atrial fibrillation from the pooled individual patient data analysis by the Microbleeds International Collaborative Network. Risks of subsequent intracranial hemorrhage and ischemic stroke were compared between patients with and without microbleeds, stratified by antithrombotic use. RESULTS: A total of 7,839 patients were included. The presence of microbleeds was associated with an increased relative risk of intracranial hemorrhage (aHR 2.74, 95% confidence interval 1.76 - 4.26) and ischemic stroke (aHR 1.29, 95% confidence interval 1.04 - 1.59). For the entire cohort, the absolute incidence of ischemic stroke was higher than intracranial hemorrhage regardless of microbleeds burden. However, for the subgroup of patients taking combination of anticoagulant and antiplatelet therapy, the absolute risk of intracranial hemorrhage exceeded that of ischemic stroke in those with 2-4 microbleeds (25 vs 12 per 1,000 patient-years) and ≄11 microbleeds (94 vs 48 per 1,000 patient-years). INTERPRETATION: Patients with atrial fibrillation and high burden of microbleeds receiving combination therapy have a tendency of higher rate of intracranial hemorrhage than ischemic stroke, with potential for net harm. Further studies are needed to help optimize stroke preventive strategies in this high-risk group. This article is protected by copyright. All rights reserved

    Cerebral Microbleeds

    No full text
    • 

    corecore