538 research outputs found
The Complexity of the Simplex Method
The simplex method is a well-studied and widely-used pivoting method for
solving linear programs. When Dantzig originally formulated the simplex method,
he gave a natural pivot rule that pivots into the basis a variable with the
most violated reduced cost. In their seminal work, Klee and Minty showed that
this pivot rule takes exponential time in the worst case. We prove two main
results on the simplex method. Firstly, we show that it is PSPACE-complete to
find the solution that is computed by the simplex method using Dantzig's pivot
rule. Secondly, we prove that deciding whether Dantzig's rule ever chooses a
specific variable to enter the basis is PSPACE-complete. We use the known
connection between Markov decision processes (MDPs) and linear programming, and
an equivalence between Dantzig's pivot rule and a natural variant of policy
iteration for average-reward MDPs. We construct MDPs and show
PSPACE-completeness results for single-switch policy iteration, which in turn
imply our main results for the simplex method
Capturing player enjoyment in computer games
The current state-of-the-art in intelligent game design using Artificial Intelligence (AI) techniques is mainly focused on generating human-like and intelligent characters. Even though complex opponent behaviors emerge through various machine learning techniques, there is generally no further analysis of whether these behaviors contribute to the satisfaction of the player. The implicit hypothesis motivating this research is that intelligent opponent behaviors enable the player to gain more satisfaction from the game. This hypothesis may well be true; however, since no notion of entertainment or enjoyment is explicitly defined, there is therefore no evidence that a specific opponent behavior generates enjoyable games.peer-reviewe
The node-deletion problem for hereditary properties is NP-complete
AbstractWe consider the family of graph problems called node-deletion problems, defined as follows; For a fixed graph property Π, what is the minimum number of nodes which must be deleted from a given graph so that the resulting subgraph satisfies Π? We show that if Π is nontrivial and hereditary on induced subgraphs, then the node-deletion problem for Π is NP-complete for both undirected and directed graphs
Model Checking Probabilistic Pushdown Automata
We consider the model checking problem for probabilistic pushdown automata
(pPDA) and properties expressible in various probabilistic logics. We start
with properties that can be formulated as instances of a generalized random
walk problem. We prove that both qualitative and quantitative model checking
for this class of properties and pPDA is decidable. Then we show that model
checking for the qualitative fragment of the logic PCTL and pPDA is also
decidable. Moreover, we develop an error-tolerant model checking algorithm for
PCTL and the subclass of stateless pPDA. Finally, we consider the class of
omega-regular properties and show that both qualitative and quantitative model
checking for pPDA is decidable
On the existence of 0/1 polytopes with high semidefinite extension complexity
In Rothvo\ss{} it was shown that there exists a 0/1 polytope (a polytope
whose vertices are in \{0,1\}^{n}) such that any higher-dimensional polytope
projecting to it must have 2^{\Omega(n)} facets, i.e., its linear extension
complexity is exponential. The question whether there exists a 0/1 polytope
with high PSD extension complexity was left open. We answer this question in
the affirmative by showing that there is a 0/1 polytope such that any
spectrahedron projecting to it must be the intersection of a semidefinite cone
of dimension~2^{\Omega(n)} and an affine space. Our proof relies on a new
technique to rescale semidefinite factorizations
On the Impact of Fair Best Response Dynamics
In this work we completely characterize how the frequency with which each
player participates in the game dynamics affects the possibility of reaching
efficient states, i.e., states with an approximation ratio within a constant
factor from the price of anarchy, within a polynomially bounded number of best
responses. We focus on the well known class of congestion games and we show
that, if each player is allowed to play at least once and at most times
any best responses, states with approximation ratio times the
price of anarchy are reached after best
responses, and that such a bound is essentially tight also after exponentially
many ones. One important consequence of our result is that the fairness among
players is a necessary and sufficient condition for guaranteeing a fast
convergence to efficient states. This answers the important question of the
maximum order of needed to fast obtain efficient states, left open by
[9,10] and [3], in which fast convergence for constant and very slow
convergence for have been shown, respectively. Finally, we show
that the structure of the game implicitly affects its performances. In
particular, we show that in the symmetric setting, in which all players share
the same set of strategies, the game always converges to an efficient state
after a polynomial number of best responses, regardless of the frequency each
player moves with
Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles
Given a simple graph , a subset of is called a triangle cover if
it intersects each triangle of . Let and denote the
maximum number of pairwise edge-disjoint triangles in and the minimum
cardinality of a triangle cover of , respectively. Tuza conjectured in 1981
that holds for every graph . In this paper, using a
hypergraph approach, we design polynomial-time combinatorial algorithms for
finding small triangle covers. These algorithms imply new sufficient conditions
for Tuza's conjecture on covering and packing triangles. More precisely,
suppose that the set of triangles covers all edges in . We
show that a triangle cover of with cardinality at most can be
found in polynomial time if one of the following conditions is satisfied: (i)
, (ii) , (iii)
.
Keywords: Triangle cover, Triangle packing, Linear 3-uniform hypergraphs,
Combinatorial algorithm
Quasi-Birth-Death Processes, Tree-Like QBDs, Probabilistic 1-Counter Automata, and Pushdown Systems
We begin by observing that (discrete-time) Quasi-Birth-Death Processes (QBDs) are equivalent, in a precise
sense, to probabilistic 1-Counter Automata (p1CAs), and both Tree-Like QBDs (TL-QBDs) and Tree-Structured QBDs (TS-QBDs) are equivalent to both probabilistic Pushdown Systems (pPDSs) and Recursive Markov Chains (RMCs).
We then proceed to exploit these connections to obtain a number of new algorithmic upper and lower bounds for central computational problems about these models. Our main result is this: for an arbitrary QBD, we can approximate its termination probabilities (i.e., its matrix) to within bits of precision (i.e., within additive error ), in time polynomial in \underline{both} the encoding size of the QBD and in , in the unit-cost rational arithmetic RAM model of computation. Specifically,
we show that a decomposed Newton's method can be used to achieve this. We emphasize that this bound is very different from the well-known ``linear/quadratic convergence'' of numerical analysis, known for QBDs and TL-QBDs, which typically gives no constructive bound in terms of the encoding size of the system being solved.
In fact, we observe (based on recent results) that for the more general TL-QBDs such a polynomial upper bound on Newton's method fails badly. Our upper bound proof for QBDs combines several ingredients: a detailed analysis of the structure of 1-counter automata, an iterative application of a classic condition number bound for errors in linear systems, and a very recent constructive bound on the performance of Newton's method for strongly connected monotone systems of polynomial equations.
We show that the quantitative termination decision problem for QBDs (namely, ``is ?'') is at least as hard as long standing open problems in the complexity of exact numerical computation, specifically the square-root sum problem. On the other hand, it follows from our earlier results for RMCs that any non-trivial approximation of termination probabilities for TL-QBDs is sqrt-root-sum-hard
A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications
A pair of unit clauses is called conflicting if it is of the form ,
. A CNF formula is unit-conflict free (UCF) if it contains no pair
of conflicting unit clauses. Lieberherr and Specker (J. ACM 28, 1981) showed
that for each UCF CNF formula with clauses we can simultaneously satisfy at
least \pp m clauses, where \pp =(\sqrt{5}-1)/2. We improve the
Lieberherr-Specker bound by showing that for each UCF CNF formula with
clauses we can find, in polynomial time, a subformula with clauses
such that we can simultaneously satisfy at least \pp m+(1-\pp)m'+(2-3\pp)n"/2
clauses (in ), where is the number of variables in which are not in
.
We consider two parameterized versions of MAX-SAT, where the parameter is the
number of satisfied clauses above the bounds and . The
former bound is tight for general formulas, and the later is tight for UCF
formulas. Mahajan and Raman (J. Algorithms 31, 1999) showed that every instance
of the first parameterized problem can be transformed, in polynomial time, into
an equivalent one with at most variables and clauses. We improve
this to variables and clauses. Mahajan and Raman
conjectured that the second parameterized problem is fixed-parameter tractable
(FPT). We show that the problem is indeed FPT by describing a polynomial-time
algorithm that transforms any problem instance into an equivalent one with at
most variables. Our results are obtained using our improvement
of the Lieberherr-Specker bound above
Efficient Equilibria in Polymatrix Coordination Games
We consider polymatrix coordination games with individual preferences where
every player corresponds to a node in a graph who plays with each neighbor a
separate bimatrix game with non-negative symmetric payoffs. In this paper, we
study -approximate -equilibria of these games, i.e., outcomes where
no group of at most players can deviate such that each member increases his
payoff by at least a factor . We prove that for these
games have the finite coalitional improvement property (and thus
-approximate -equilibria exist), while for this
property does not hold. Further, we derive an almost tight bound of
on the price of anarchy, where is the number of
players; in particular, it scales from unbounded for pure Nash equilibria ( to for strong equilibria (). We also settle the complexity
of several problems related to the verification and existence of these
equilibria. Finally, we investigate natural means to reduce the inefficiency of
Nash equilibria. Most promisingly, we show that by fixing the strategies of
players the price of anarchy can be reduced to (and this bound is tight)
- …