187 research outputs found

    Comparative Synthesis: Learning Near-Optimal Network Designs by Query

    Full text link
    When managing wide-area networks, network architects must decide how to balance multiple conflicting metrics, and ensure fair allocations to competing traffic while prioritizing critical traffic. The state of practice poses challenges since architects must precisely encode their intent into formal optimization models using abstract notions such as utility functions, and ad-hoc manually tuned knobs. In this paper, we present the first effort to synthesize optimal network designs with indeterminate objectives using an interactive program-synthesis-based approach. We make three contributions. First, we present comparative synthesis, an interactive synthesis framework which produces near-optimal programs (network designs) through two kinds of queries (Propose and Compare), without an objective explicitly given. Second, we develop the first learning algorithm for comparative synthesis in which a voting-guided learner picks the most informative query in each iteration. We present theoretical analysis of the convergence rate of the algorithm. Third, we implemented Net10Q, a system based on our approach, and demonstrate its effectiveness on four real-world network case studies using black-box oracles and simulation experiments, as well as a pilot user study comprising network researchers and practitioners. Both theoretical and experimental results show the promise of our approach

    An efficient mutagenesis system to improve the propamocarb tolerance in Lecanicillium lecanii (Zimmermann) Zare & Gams

    Get PDF
    Lecanicillium lecanii (Zimmermann) Zare & Gams is used as an effective biopesticide for the control of sap-sucking insect pests on agricultural crops. However, low fungicide tolerance limits its large-scale field application. To improve the propamocarb tolerance in L. lecanii, a composite mutagenesis system was established by using UV-light (U), N-Methyl-N′-nitro-N-nitrosoguanidine (NTG) (N) and N+ ion-beam (I). The permutation type of three agents was a consecutive mutagenesis treatment (I/N/U) after an intermittent treatment (U + N + I). The “U” mutagenesis was performed at 254 nm for 60 s and at a distance of 45 cm under a 20 W germicidal lamp, the “N” mutagenesis was performed at a concentration of 1.0 mg/mL NTG for 60 min, and the “I” mutagenesis was performed by low energy N+ ion-beam using a dose of 10 × 1013 ions/cm2 at 30 keV. This composite mutagenesis system was recorded as the “U + N + I + I/N/U,” and then the mutagenesis efficiency in improving propamocarb tolerance was assessed by analyzing changes of mutants in the propamocarb sensitivity, mitotic stability, mycelial growth speed on plates or in liquid, sporulation on plates or aphids, conidial germination, 50% lethal concentration (LC50) and 50% lethal time (LT50) to aphids, lipid constituent and cell membrane permeability and control against aphids in the presence or absence of propamocarb. Compared to the wild-type isolate with a 50% effective concentration (EC50) value of 503.6 μg/mL propamocarb, the Ll-IC-UNI produced by the “U + N + I + I/N/U” had the highest EC50 value of 3576.4 μg/mL and a tolerance ratio of 7.1. The mutant was mitotically stable in 20-passage cultivation and did not show any unfavorable changes in growth and virulence indicators. The mutant showed the highest ability to resist or avoid the damaging effects of propamocarb as reflected by the alternations of lipid constituents and membrane permeability. The interval time for applying fungal agent was significantly shortened in this mutant after spraying a field recommended dose of 550 μg/mL propamocarb. In conclude, the “U + N + I + I/N/U” composite mutagenesis mode was efficient and useful to improve the propamocarb-tolerance of L. lecanii and the obtained Ll-IC-UNI could have commercial potential for field application

    Observation of Full-Parameter Jones Matrix in Bilayer Metasurface

    Full text link
    Metasurfaces, artificial 2D structures, have been widely used for the design of various functionalities in optics. Jones matrix, a 2*2 matrix with eight parameters, provides the most complete characterization of the metasurface structures in linear optics, and the number of free parameters (i.e., degrees of freedom, DOFs) in the Jones matrix determines the limit to what functionalities we can realize. Great efforts have been made to continuously expand the number of DOFs, and a maximal number of six has been achieved recently. However, the realization of 'holy grail' goal with eight DOFs (full free parameters) has been proven as a great challenge so far. Here, we show that by cascading two layer metasurfaces and utilizing the gradient descent optimization algorithm, a spatially varying Jones matrix with eight DOFs is constructed and verified numerically and experimentally in optical frequencies. Such ultimate control unlocks new opportunities to design optical functionalities that are unattainable with previously known methodologies and may find wide potential applications in optical fields.Comment: 53 paegs, 4 figure

    Ultrasonic Nonlinearity Evaluation of the Cracked Interface

    Get PDF
    This paper derives a novel analytical solution for acoustic nonlinearity evaluation of the cracked interface. When microcracks exist at the interface, the tensile and compressive effective moduli of the cracked interface are considered to be different. It is clearly shown that the tension and compression elastic asymmetry can result in acoustic nonlinearity. In addition, numerical simulations using the finite element method are conducted to validate the theoretical solution. It is shown that numerical results agree well with the analytical solution. Finally, two factors affecting acoustic nonlinearity are studied based on the analytical solution. One is the tension and compression elastic asymmetry and another is the frequency of incident wave. Different from acoustic nonlinearity parameter of the general second harmonics, it is found that acoustic nonlinearity parameter is a function of two factors

    High-Order Spectral Finite Elements in Analysis of Collinear Wave Mixing

    Get PDF
    Implementing collinear wave mixing techniques with numerical methods to detect acoustic nonlinearity due to damage and defects is of vital importance in nondestructive examination engineering. However, numerical simulations in existing literatures are often limited due to the compromise between computational efficiency and accuracy. In order to balance the contradiction, spectral finite element (abbreviated as SFE) with 3 × 3 and 8 × 6 nodes is developed to simulate collinear wave mixing for 1D and 2D cases in this study. The comparisons among analytical solutions, experiments, finite element method (FEM), and spectral finite element method are presented to validate the feasibility, efficiency, and accuracy of the proposed SFEs. The results demonstrate that the proposed SFEs are capable of increasing computational efficiency by as much as 14 times while maintaining the same accuracy in comparison with FEM. In addition, five 3 × 3 nodes’ SFEs or one 8 × 6 nodes’ SFE per the shortest wavelength is sufficient to capture mixing waves. Finally, the proposed 8 × 6 nodes’ SFE is recommended for collinear wave mixing to detect damage, which can offer more accuracy with similar efficiency compared to 3 × 3 nodes’ SFE

    Causal association between self-reported fatigue and coronary artery disease: a bidirectional two-sample Mendelian randomization analysis

    Get PDF
    BackgroundObservational studies have reported the association between fatigue and coronary artery disease (CAD), but the causal association between fatigue and CAD is unclear.MethodWe conducted a bidirectional Mendelian randomization (MR) study using publicly available genome-wide association studies (GWAS) data. The inverse-variance weighted (IVW) method was used as the primary analysis. We performed three complementary methods, including weighted median, MR-Egger regression, and MR pleiotropy residual sum and outlier (MR-PRESSO) to evaluate the sensitivity and horizontal pleiotropy of the results.ResultSelf-reported fatigue had a causal effect on coronary artery atherosclerosis (CAA) (OR 1.047, 95%CI 1.033–1.062), myocardial infarction (MI) (OR 1.027 95%CI 1.014–1.039) and coronary heart disease (CHD) (OR 1.037, 95%CI 1.021–1.053). We did not find a significant reverse causality between self-reported fatigue and CAD. Given the heterogeneity revealed by MR-Egger regression, we employed the IVW random effect model. For the examination of fatigue on CHD and the reverse analysis of CAA, and MI on fatigue, the MR-PRESSO test found horizontal pleiotropy. No significant outliers were found.ConclusionThe MR analysis reveals a causal relationship between self-reported fatigue and CAD. The results should be interpreted with caution due to horizontal pleiotropy

    Transient ischemic attack and coronary artery disease: a two-sample Mendelian randomization analysis

    Get PDF
    BackgroundAlthough observational studies have shown that patients who experienced transient ischemic attacks (TIAs) had a higher risk of coronary artery disease (CAD), the causal relationship is ambiguous.MethodsWe conducted a two-sample Mendelian randomization (MR) study to analyze the causal relationship between TIA and CAD using data from the FinnGen genome-wide association study. Analysis was performed using the inverse-variance weighted (IVW) method. The robustness of the results was evaluated using MR-Egger regression, the weighted median, MR pleiotropy residual sum, and outlier (MR-PRESSO) and multivariable MR analysis.ResultsResults from IVW random-effect model showed that TIA was associated with an increased risk of coronary artery atherosclerosis (OR 1.17, 95% CI 1.06–1.28, P = 0.002), ischemic heart disease (OR 1.15, 95% CI 1.04–1.27, P = 0.007), and myocardial infarction (OR1.15, 95% CI 1.02–1.29, P = 0.025). In addition, heterogeneity and horizontal pleiotropy were observed in the ischemic heart disease results, while the sensitivity analysis revealed no evidence of horizontal pleiotropy in other outcomes.ConclusionsThis MR study demonstrated a potential causal relationship between TIA and CAD. Further research should be conducted to investigate the mechanism underlying the association

    Identification of induced polarization of submarine hydrocarbons in marine controllable source electromagnetic exploration

    Get PDF
    The identification of hydrocarbons buried on the seafloor is highly dependent on geophysical exploration capabilities. Seismic exploration has been an important tool in providing information on submarine stratigraphy before offshore drilling, but it is a challenge to identify the nature and saturation of the fluid in the structure by seismic exploration. Of all the physical properties, electrical parameters are the most sensitive to the fluids in the reservoir and would be able to be combined with seismic data to improve the identification of hydrocarbons at depth. However, the marine controlled-source electromagnetic method usually only considers the effect of electromagnetic induction and ignores the induced polarization (IP) effects. The IP effects can occur in the stratum where the reservoir is located due to a variety of factors, so considering the IP effects will make the modeling more reasonable and thus give more accurate results when interpreting and processing the data. We have used the integral equation method for modeling, adopted the scattering and superposition methods to calculate the dyadic Green’s function required in the study, replaced the real resistivity with a complex resistivity that takes into account the IP effects, investigated the response patterns of different ion polarization models, and analyzed the influence patterns of various model parameters. These investigations will provide important contributions to the study of submarine hydrocarbon detection. The field data also show the amplitude, and phase response results of polarizability show that it gradually increases from the offset

    OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice

    Get PDF
    Although allelic diversity of genes has been shown to contribute to many phenotypic variations associated with different physiological processes in plants, information on allelic diversity of abiotic stress-responsive genes is limited. Here it is shown that the alleles OsWRKY45-1 and OsWRKY45-2 play different roles in abscisic acid (ABA) signalling and salt stress adaptation in rice. The two alleles had different transcriptional responses to ABA and salt stresses. OsWRKY45-1-overexpressing lines showed reduced ABA sensitivity, whereas OsWRKY45-1-knockout lines showed increased ABA sensitivity. OsWRKY45-1 transgenic plants showed no obvious difference from negative controls in response to salt stress. In contrast, OsWRKY45-2-overexpressing lines showed increased ABA sensitivity and reduced salt stress tolerance, and OsWRKY45-2-suppressing lines showed reduced ABA sensitivity and increased salt stress tolerance. OsWRKY45-1 and OsWRKY45-2 transgenic plants showed differential expression of a set of ABA- and abiotic stress-responsive genes, but they showed similar responses to cold and drought stresses. These results suggest that OsWRKY45-1 negatively and OsWRKY45-2 positively regulates ABA signalling and, in addition, OsWRKY45-2 but not OsWRKY45-1 negatively regulates rice response to salt stress. The different roles of the two alleles in ABA signalling and salt stress may be due to their transcriptional mediation of different signalling pathways
    corecore