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Implementing collinear wavemixing techniques with numerical methods to detect acoustic nonlinearity due to damage and defects
is of vital importance in nondestructive examination engineering. However, numerical simulations in existing literatures are often
limited due to the compromise between computational efficiency and accuracy. In order to balance the contradiction, spectral finite
element (abbreviated as SFE) with 3 × 3 and 8 × 6 nodes is developed to simulate collinear wave mixing for 1D and 2D cases in this
study.The comparisons among analytical solutions, experiments, finite element method (FEM), and spectral finite element method
are presented to validate the feasibility, efficiency, and accuracy of the proposed SFEs. The results demonstrate that the proposed
SFEs are capable of increasing computational efficiency by as much as 14 times while maintaining the same accuracy in comparison
with FEM. In addition, five 3 × 3 nodes’ SFEs or one 8 × 6 nodes’ SFE per the shortest wavelength is sufficient to capture mixing
waves. Finally, the proposed 8 × 6 nodes’ SFE is recommended for collinear wave mixing to detect damage, which can offer more
accuracy with similar efficiency compared to 3 × 3 nodes’ SFE.

1. Introduction

Recently, wave mixing techniques with noncollinear [1, 2]
and collinear [3–6] incident waves have been used to detect
the change of material nonlinearity caused by plasticity
and fatigue damage. The techniques are less sensitive to
the measurement system nonlinearity and can detect the
nonlinearity of the mixing zone instead of the average value
during incident wave propagation. The nonlinear wave mix-
ing techniques have some unique advantages compared to
traditional nonlinear wave techniques. For instance, frequen-
cies can be selected according to the requirements of users,
which can avoid unwanted harmonics typically generated
by a number of electronic components in the measurement
system. Besides, researchers can scan over the regions of
interest directly by controlling the wave mixing locations.

Collinear wave mixing techniques were studied analyt-
ically, numerically, and experimentally by Tang et al. [3–
5, 7] and Chen et al. [6, 7]. Chen et al. [6] derived a set of

necessary and sufficient conditions for generating resonant
waves by two propagating time-harmonic plane waves and
obtained closed-form analytical solutions to resonant waves
generated by two collinearly propagating sinusoidal pulses.
Numerical simulations based on finite element method and
experimentalmeasurements using one-waymixingwere con-
ducted.However, waveforms and propagation rules ofmixing
waves can be obtained from the analytical solutions [6] only
for plane wave (1D) case in the semi-infinite domain when
resonant conditions are strictly satisfied. In realistic exper-
imental measurements, the limitations, such as frequency
deviation due to inaccurate acoustic velocity of material or
quasi-collinear wave generation, could result in imperfect
resonant conditions when using collinear wave mixing tech-
niques. Therefore, it is necessary to simulate collinear wave
mixing with numerical methods, which are the extension and
supplement to the analytical solutions and the experiments.

For the past two decades, various numerical methods
including finite difference method [8, 9], finite element
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method [10, 11], boundary element method [12, 13], finite
strip element method [14, 15], mass-spring lattice model
[16, 17], and local interaction simulation approach [18, 19]
have been applied to simulate wave propagation. Finite
element method requires strict rules for spatial and temporal
discretization to study the interaction of waves, which can
cause numerical problems in the cases of high frequencies
and great dimensions [20–22]. No less than 20 first-order 4-
node reduced elements per wavelength of the highest fre-
quencies are required to capture nonlinear interaction [23].
Therefore, finite element method is limited due to the contra-
diction between accuracy and efficiency for high frequency
wave propagation. However, the orthogonal polynomials-
based spectral finite element method [24–26] is much more
suitable for analyzing wave propagation in structures with
complex geometry. This method is characterized by high-
order orthogonal polynomials as approximation functions
with diagonal mass matrix obtained naturally. More recently,
spectral finite element method was used to simulate wave
propagation in structures.Wave propagation in 1D structures,
such as rod and beam, was investigated by some researches
[27–31]. Numerical simulations of transverse wave propaga-
tion in a composite plate were presented by Kudela et al.
[32]. Komatitsch et al. [33] applied a spectral element method
based upon a conforming mesh of quadrangles and triangles
to the problem of 2D elastic wave propagation. Rekatsinas et
al. [34] developed a time-domain spectral finite element for
improving the efficiency of numerical simulations of guided
waves in laminated composite strips. The applications of 3D
spectral finite element to wave propagation problems [35–39]
were also investigated in many fields.

However, the applications of spectral finite element
method for wave mixing techniques have not been widely
reported in literatures so far. In this paper, two types of
spectral finite elements are developed to simulate collinear
wave mixing for damage detection. Results from analyt-
ical solutions, experiments, FEM, and SFE are compared
to validate the feasibility, efficiency, and accuracy of the
proposed SFEs. Finally, the comparison between two types
of spectral finite elements is investigated by considering the
contradiction between accuracy and efficiency.

2. Theory for Collinear Mixing of Wave Pulses

Consider a homogeneous solid with quadratic nonlinearity;
the displacement equations of motion in one dimension can
be written as [6]
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where 𝑢
1
and 𝑢

2
are the two components of the displacement

and 𝑐
𝐿

= √(𝜆 + 2𝜇)/𝜌 and 𝑐
𝑇

= √𝜇/𝜌 are the longitudinal
and transverse phase velocities, respectively. 𝛽

𝐿
= 3 +

2(𝑙 + 2𝑚/𝜆 + 2𝜇) and 𝛽
𝑇

= (𝜆 + 2𝜇)/𝜇 + 𝑚/𝜇 are
called, respectively, the longitudinal and transverse acoustic

nonlinearity parameters. 𝜆 and 𝜇 are the Lamé constants, 𝜌
is the mass density, and 𝑙,𝑚, and 𝑛 are the Murnaghan third-
order elastic constants.

When a longitudinal wave pulse and a transverse wave
pulse are both emitted at 𝑥 = 0 and propagate in the positive
𝑥-direction, it is called one-waymixing.When the transverse
pulse is emitted at 𝑥 = 0 and propagates in the positive 𝑥-
direction, while the longitudinal pulse is emitted at 𝑥 = 𝐿

and propagates in the negative 𝑥-direction, it is called two-
waymixing. A resonant transversewavewill be generated and
propagate in the opposite direction of the primary transverse
wave, if resonance conditions𝜔
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waves, respectively.

The signal received at 𝑥 = 0 for one-way mixing can be
expressed as
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The signal received at 𝑥 = 0 for two-way mixing can be
expressed as
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The detailed expressions of (2) and (3) are given in [6].

3. Formulation of 2D Spectral Finite Element

The spectral finite element formulation [27, 33, 39] process of
the stiffness and mass matrices is similar to the traditional
finite element formulation. The domain Ω in 2D is firstly
meshed to a number of nonoverlapping quadrilaterals. The
quadrilateral spectral finite element defined on the domain
Ω
𝑒
is subsequently mapped from the physical coordinate

(𝑥, 𝑦) to the reference domainΛwith (𝜉, 𝜂) ∈ [−1, 1]× [−1, 1]

using invertible local mapping F
𝑒

: Λ → Ω
𝑒
. In the

reference domainΛ, a set of local shape functions are defined
consisting of Lagrange polynomials of degree 𝑁. The local
nodes 𝜉

𝑖
∈ [−1, 1], 𝑖 ∈ 1, . . . , (𝑁 + 1), are defined as Gauss-

Lobatto-Legendre (GLL) points which are (𝑁+1) roots of the
equation
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denotes the 𝑖th Lagrange interpolation at (𝑁 + 1) GLL points
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Similar to the traditional finite element method, the
element matricesM𝑒 andK𝑒 and the vector F𝑒 are formulated
numerically as follows:
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where D𝑒 is termed the material stiffness matrix, p(𝑥, 𝑦)𝑒 is
a distributed load, and J𝑒 is the Jacobian associated with the
mapping F

𝑒
from the element Ω

𝑒
to the reference domain.

The superscript 𝑒 represents the matrix of the element in the
local coordinates both in linear and in nonlinear conditions.

The quadratic nonlinear elastic constitutive relation [40]
including second-order constants and third-order constants
is used, which is expressed using Voigt’s notation 𝐶
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where 𝐸 is the Lagrangian or Green strain, 𝐼, 𝐽, 𝐾 ∈

{1, 2, 3, 4, 5, 6}, 𝑖𝑗 = 11, 22, 33, 23, 31, 12 ↔ 𝐼 = 1, 2, 3, 4, 5, 6.
The matrix B𝑒 is connected with approximated strains:
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The quadrature weights 𝑤
𝑖
, which are independent of the

element, are determined by

𝑤
𝑖
=

2

𝑛 (𝑛 − 1) [𝑃
𝑛−1

(𝜉
𝑖
)]
2
, 𝑖 ∈ 1, . . . , 𝑛, 𝑛 = 𝑁 + 1. (10)

The element matrices are assembled to the global coor-
dinate system and finally a modeling problem of wave
propagation is reduced to a well-known ordinary differential
equation, which can be written as

M (𝑈) Ü + C (𝑈) U̇ + K (𝑈)U = F, (11)

where M(𝑈) is the global mass matrix, C(𝑈) is the global
dampingmatrix, andK(𝑈) is the global stiffness matrix.They
are all the functions of displacements 𝑈 in the nonlinear
conditions. F is a vector of the time-dependent excitation
signal.

Because of the excellent property of the SFE with the
diagonal mass matrix, it is especially suitable for explicit
scheme (central difference method) to discretize the second-
order ordinary differential equation in time.Therefore, based
on the finite element method software ABAQUS, two types
of 2D spectral finite elements (3 × 3 and 8 × 6 nodes)
are developed via the user defined element subroutine of
explicit solver (VUEL) using FORTRAN language to simulate
collinear wave mixing. The scheme of the spectral finite
element with 3 × 3 nodes for 2-order Legendre polynomial
both in 𝜉 and in 𝜂 direction is shown in Figure 1(a). Similarly,
the spectral finite elements with 8 × 6 nodes for 7-order
Legendre polynomial in 𝜉 direction and 5-order Legendre
polynomial in 𝜂 direction are shown in Figure 1(b). The
flowchart of VUEL subroutine is listed in Figure 2.

4. Numerical Simulations

In this section, the feasibility of using spectral finite element
method to simulate collinear wave mixing is investigated.
The results of 1D case from the SFEs illustrated in Section 3
are compared with analytical and FEM results. It should be
mentioned that the 4-node quadrilateral elements are utilized
in the various condition for providing the comparison. The
2D half-space results from the SFEs are also compared with
experimental and FEM results. The purpose is to determine
the feasibility, efficiency, and accuracy in SFE simulations
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Figure 1: The schemes of spectral finite elements developed in this paper.
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to capture resonant waves. In SFE simulations, aluminum is
used with the mechanical parameters [41] as follows: Young’s
modulus is 70GPa, Poisson ratio is 0.33, mass density is
2700 kg/m3, andMurnaghan third-order elastic constants are
𝑙 = −126GPa,𝑚 = −320GPa, and 𝑛 = −282GPa.

4.1. Plane Wave Simulations. To simulate plane waves, a
rectangular strip of 100mm × 5mm is used in SFE-based
model. The model consists of 62,500 3 × 3 nodes’ SFEs with
505,202 DOFs. A longitudinal and transverse wave pulse are
generated from either the same end (one-way mixing) or
opposite ends (two-waymixing).The source to generate these
two pulses is uniformly distributed over the entire end surface
of the rectangular strip, and periodic boundary conditions are
used on the top and bottom surfaces of the rectangular strip.
The receiver is located at the sameposition as the source of the
transverse wave. The transverse pulse contains 10 cycles with
the amplitude of 10−4mm, and the longitudinal pulse contains
5 cycles with the amplitude of 10−5mm.

For one-way mixing, the frequencies used are 𝜔
𝑇

=

7.5MHz for the transverse wave and 𝜔
𝐿

= 10MHz for
the longitudinal wave, which satisfy the resonant condition
𝜔
𝐿
/𝜔
𝑇
= 2𝜅/(𝜅+1).The corresponding resonant frequency is

𝜔
𝑅
= 2.5MHz. In the case of two-waymixing, the frequencies

used are 𝜔
𝑇

= 2.5MHz for the transverse wave and 𝜔
𝐿

=

10MHz for the longitudinal wave, which satisfy the resonant
condition 𝜔

𝐿
/𝜔
𝑇
= 2𝜅/(𝜅 − 1). The corresponding resonant

frequency is 𝜔
𝑅
= 7.5MHz.

It is estimated that the shortest wavelength is about 20
times the largest element size for FEM simulations with 4-
node quadrilateral elements. In SFE simulations with 3 × 3
nodes’ SFEs, five elements per the shortest wavelength are
sufficient to capture resonant waves. Time increment Δ𝑡 =

2.5×10
−10 sec is conservatively conducted for explicit scheme.

SFE simulations are conducted with 12 cores in parallel on
Quest high performance computing cluster at Northwestern
University.

The analytical and FEM results are also conducted to val-
idate the feasibility, efficiency, and accuracy of the proposed
SFEs. Shown in Figures 3(a) and 3(b) with blue dashed lines
are the time-domain waveforms of resonant waves generated
by one-way and two-way mixing using 3 × 3 nodes’ SFE,
respectively. The computation time and error of 3 × 3 nodes’
SFE are listed in Table 1 in comparison with FEM. The
excellent comparison shows that the proposed 3 × 3 nodes’
SFE is capable of capturing accuratelymixingwaves. Five 3× 3
nodes’ SFEs per the shortest wavelength can provide sufficient
accuracy compared with analytical solutions. Further, the 3
× 3 nodes’ SFE reduces two-thirds of DOFs and CPU time
compared with FEM. It is shown that the 3 × 3 nodes’ SFE can
provide more efficiency with sufficient accuracy than FEM.
In other words, when FEM could not deal with the cases of
higher frequencies and greater dimensions, SFE could be a
viable numerical method for those cases.

The proposed 8 × 6 nodes’ SFE is also employed for one-
way and two-waymixing cases.Themodel is meshed to 2,500
8 × 6 nodes’ SFEs with 178,602 DOFs. Because of the higher
precision Legendre polynomial in 8 × 6 nodes’ SFE, only one
element per the shortest wavelength is sufficient to capture

Table 1: The comparison between SFEs and FEM for plane wave
case.

3 × 3 nodes’ SFE 8 × 6 nodes’ SFE FEM
DOFs 505,202 178,602 1,608,402
Error 1.85% 0.15% 2.27%
CPU time 3 h 15min 4 h 30min 10 h

resonant waves.The results of 8 × 6 nodes’ SFE are compared
with analytical, FEM, and 3 × 3 nodes’ SFE, which are shown
in Figure 3 and Table 1. The comparison shows that the 8 × 6
nodes’ SFE provides more accuracy than both FEM and 3 × 3
nodes’ SFE do. Although CPU time for the simulation using 8
× 6 nodes’ SFE is marginally more than 3 × 3 nodes’ SFE, the
8 × 6 nodes’ SFE still reduces 55% of that CPU time compared
with FEM.

4.2. 2D Half-Space Simulations. Ultrasonic tests are usually
conducted on finite-size samples, and the pulses are gen-
erated by transducers of finite aperture as well. Thus, it is
necessary to simulate the actual wave fields generated by
finite-size transducers in finite-size samples using numerical
simulations. All the physical processes of generating resonant
waves are the same in 2D and 3D simulations. However,
3D simulations may cause super-large-scale computation up
to one hundred million DOFs. Due to the limitation of
computing resource, 2D half-space simulations are employed
to simulate one-way and two-way mixing compared with
experimental measurements.

The 2D SFE model is a 150mm × 144mm rectangular
strip with 450,000 3 × 3 nodes’ SFEs and 5,000 plane strain
infinite elements (CINPE4). CINPE4 element can introduce
nonreflecting boundary conditions to simulate the half-
space case. The frequencies and amplitudes of transverse and
longitudinal wave pulses are the same as those in plane wave
simulations for one-way and two-way mixing.The transverse
and longitudinal pulses both contain 10 cycles. However,
the Gaussian distribution (𝑓(𝑟) = 𝐸

0
exp(−𝑟2/𝜔2

0
)) in 𝑥-𝑦

plane is used for the transverse and longitudinal waves,
which is different from plane wave simulations. For one-
way mixing, 6mm surface above the original point at the
𝑥-axis end of sample is used to generate transverse wave
pluses and receive mixing wave signals, while another 6mm
surface below the original point at the same end is used to
generate longitudinal wave pluses. And in the case of two-
waymixing, 12mm surface at the 𝑥-axis end of sample is used
to generate transverse wave pluses and receive mixing wave
signals, while 12mm surface at the opposite end is used to
generate longitudinal wave pluses.

The model is also meshed to 33,500 8 × 6 nodes’ SFEs.
The SFEs simulations are conducted with 144 cores via dis-
tributed parallel computation. The time-domain waveforms
of resonant waves generated by one-way and two-waymixing
using 8 × 6 nodes’ SFE are shown in Figures 4(a) and 4(b),
respectively. The experimental results of one-way mixing [6]
and two-waymixing [3] are included to comparewith 2D SFE
simulations. Excellent agreement between SFE results and
experimental measurements is observed. This demonstrates
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Figure 3: Waveforms of resonant waves generated by the one-way (a) and two-way (b) mixing.

34 36 38 40 42
Time (s)

Experiment

×10−6

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 am
pl

itu
de

FEM 8 × 6 nodes’ SFE
3 × 3 nodes’ SFE

−1.0

−0.5

(a)

27 28 29 30 31
Time (s)

Experiment
FEM 8 × 6 nodes’ SFE

3 × 3 nodes’ SFE

−1.0

−0.5

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 am
pl

itu
de

×10−6

(b)

Figure 4: Waveforms of resonant waves from the one-way (a) and two-way (b) mixing for 2D case.

that the proposed SFEs could be viable numerical methods
to simulate collinear wave mixing for damage detection. The
computation times of SFEs are listed in Table 2 in comparison
with FEM.The SFEs are capable of increasing computational
efficiency by as much as 14 times compared to FEM.

In FEM simulations, 20 first-order elements per wave-
length are required to precisely capture every waveform
propagating in the medium, which leads to significant large-
scale computations for high frequency waves. However, due
to the high precision Legendre polynomial in spectral finite
element, only five 3 × 3 nodes’ SFEs or one 8 × 6 nodes’
SFE per wavelength is sufficient to accurately simulate wave
propagation. Therefore, spectral finite element method can
reduce computing scale and improve efficiency dramatically.

Both proposed 3 × 3 and 8 × 6 nodes’ SFE can provide
sufficient accuracy and excellent efficiency compared to FEM.
By contrast, the 8 × 6 nodes’ SFE can provide more accuracy
with similar efficiency. Therefore, it is recommended that the
proposed 8 × 6 nodes’ SFE is suitable to capture resonant
waves from collinear wave mixing.

5. Summary and Conclusions

In this paper, 3 × 3 and 8 × 6 nodes’ spectral finite elements
for nonlinear wave are developed. A series of collinear wave
mixing simulations for 1D and 2D cases with the proposed
spectral finite elements are conducted in this study.The feasi-
bility, efficiency, and accuracy of these spectral finite elements
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Table 2: The comparison between SFEs and FEM for 2D simulations.

One-way mixing Two-way mixing
3 × 3 nodes’ SFE 8 × 6 nodes’ SFE FEM 3 × 3 nodes’ SFE 8 × 6 nodes’ SFE FEM

DOFs 4,516,806 2,111,706 15,878,646 4,516,806 2,111,706 15,878,646
CPU time 0 h 20min 0 h 24min 2 h 30min 0 h 15min 0 h 20min 3 h 30min

are validated in comparison with analytical solutions, FEM,
and experiments.

The present work shows that the proposed spectral finite
elements provide efficient tools to simulate collinear wave
mixing for damage detection. The advantages of these spec-
tral finite elements can be summarized as follows:

(1) Due to the high precision Legendre polynomial, the
SFEs-based model can significantly reduce the num-
ber of elements per wavelength to capture mixing
waveforms compared with the FEM-based model.
Only five 3 × 3 nodes’ SFEs or one 8 × 6 nodes’ SFE
per the shortest wavelength is sufficient to simulate
collinear wavemixing compared to twenty traditional
finite elements.

(2) The proposed spectral finite elements are capable of
increasing computational efficiency by as much as
14 times while maintaining the same accuracy in
comparison with traditional FEM. Several numerical
simulations with 15millionDOFs utilizing traditional
FEM, 4.5 million DOFs utilizing 3 × 3 nodes’ SFE,
and 2.1 million DOFs utilizing 8 × 6 nodes’ SFE have
been proposed to prove this advantage for large-scale
computations of collinear wave mixing, respectively.

(3) Implementing spectral finite element method using
VUEL subroutine is exceedingly efficient when deal-
ing with large-scale computations via multiple com-
puting nodes.

(4) The proposed 8 × 6 nodes’ SFE is recommended for
collinear wavemixing to detect damage, as it can offer
more accuracy with similar efficiency compared to 3
× 3 nodes’ SFE.
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