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Transient ischemic attack
and coronary artery disease:
a two-sample Mendelian
randomization analysis
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Shantou University, Shantou, China, 3Department of Cardiovascular Surgery, Peking University Shenzhen
Hospital, Shenzhen, China

Background: Although observational studies have shown that patients who
experienced transient ischemic attacks (TIAs) had a higher risk of coronary artery
disease (CAD), the causal relationship is ambiguous.
Methods: We conducted a two-sample Mendelian randomization (MR) study to
analyze the causal relationship between TIA and CAD using data from the
FinnGen genome-wide association study. Analysis was performed using the
inverse-variance weighted (IVW) method. The robustness of the results was
evaluated using MR-Egger regression, the weighted median, MR pleiotropy
residual sum, and outlier (MR-PRESSO) and multivariable MR analysis.
Results: Results from IVW random-effect model showed that TIA was associated
with an increased risk of coronary artery atherosclerosis (OR 1.17, 95% CI 1.06–
1.28, P=0.002), ischemic heart disease (OR 1.15, 95% CI 1.04–1.27, P= 0.007),
and myocardial infarction (OR1.15, 95% CI 1.02–1.29, P= 0.025). In addition,
heterogeneity and horizontal pleiotropy were observed in the ischemic heart
disease results, while the sensitivity analysis revealed no evidence of horizontal
pleiotropy in other outcomes.
Conclusions: This MR study demonstrated a potential causal relationship between
TIA and CAD. Further research should be conducted to investigate the mechanism
underlying the association.
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Introduction

Coronary artery disease (CAD) is a cardiovascular disorder caused by atherosclerosis or

atherosclerotic occlusions of the coronary arteries (1). Coronary artery atherosclerosis (CAA)

is a complex and chronic inflammatory disease characterized by atherosclerotic plaque

formation of coronary arteries and has various clinical manifestations. CAD includes a

series of diseases that belong to different stages of the pathology progression of coronary

atherosclerosis. A ruptured plaque with occlusion of the coronary artery results in

myocardial infarction (MI). Acute MI and myocardial necrosis could further induce left

ventricular dysfunction and ischemic heart disease (IHD) (2). CAD is a leading cause of

death in both developed and developing countries (3). According to the Global Burden of

Diseases 2016, 17.8 million patients die annually from cardiovascular disease, accounting

for 21.1% of death overall global deaths (4). The high morbidity and mortality associated
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TABLE 1 Sources of GWAS data.

Trait Sample size Source GWAS ID
Transient ischemic attack 211,058 Europe finn-b-I9_TIA

Coronary atherosclerosis 211,203 Europe finn-b-I9_CORATHER

Myocardial infarction 200,641 Europe finn-b-I9_MI

Ischemic heart disease 218,792 Europe finn-b-I9_ISCHHEART

Hypertension 218,754 Europe finn-b-I9_HYPTENS

Diabetes 215,654 Europe finn-b-E4_DM2

Smoking 138,088 Europe finn-b-SMOKING
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with CAD also impose significant economic burdens (5). Thus,

identifying the risk factors of CAD is necessary to prevent and

reduce the disease burden.

Transient ischemic attack (TIA) is defined as a sudden, focal

neurological deficit of presumed vascular origin that lasts less than

24 h (6). Approximately 240,000 individuals per year in the USA

experience TIA (7). Even though TIA results in transient

neurological symptoms, its comorbidity such as recurrent stroke

and cardiac events should not be ignored. Previous studies have

indicated that CAD is a common comorbidity in patients with

TIA. An early Oxfordshire community stroke project (OCSP)

found that patients with TIA have a 27.8% risk of developing

CAD within 10 years (8). A study on the relationship between

ischemic stroke and CAD found that stroke patients were five

times more likely to have coronary artery plaque (9). A

retrospective study showed that the incidence of MI in TIA

patients was higher than that in the general population (OR 2.09,

95% CI 1.52–2.81) (10). Furthermore, a meta-analysis including 58

studies found that the annual risk of MI is 1.67% greater in

patients with a history of TIA (11). According to the Third China

National Stroke Registry (CNSR-III), the 1-year risk of MI or

vascular death due to cardiovascular disease is 11.2% in TIA

patients (12). However, the prevalence of non-fatal CAD in Japan

is much lower, only 1.9% (13). Besides, the results of observational

studies could not avoid reverse causality and confounding factors

(14). Therefore, further studies are necessary to elucidate whether

there is a causal association between TIA and CAD.

Mendelian randomization (MR) is a novel approach to

evaluating causal links between risk factors and outcomes. The

basis of MR is that genetic variants that affect a specific risk

factor are randomly distributed in a population. In addition, it is

assumed that the genetic variants are not associated with

confounding factors. Consequently, differences in outcomes can

be attributed to the differences in risk factors (15). In this study,

we conducted a two-sample Mendelian randomization analysis to

explore the potential causal relationship between TIA and CAD.

The identification of a causal relationship between TIA and CAD

could contribute to reducing and preventing cardiac events in

patients experiencing TIA.
Methods

Data sources

To perform two-sample MR analyses, we obtained genome-

wide association study (GWAS) summary statistics from the

MR-Base platform (http://gwas-api.mrcieu.ac.uk/). Summary-level

data for TIA were obtained from the FinnGen study (16), which

includes 8,835 cases and 202,223 controls to date. Data on CAA,

IHD, and MI were obtained from the FinnGen study (16), with

23,363 CAA and 187,840 controls, 30,952 IHD cases, with

187,840 controls, and 12,801 MI cases with 187,840 controls. The

enrolled participants were all of European ancestry. Apart from

the primary instruments, data on confounding factors, such as

smoking, diabetes, and hypertension, were also extracted from
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the FinnGen study (16), with a total of 218,754, 215,654, and

138,088 participants of European ancestry. Table 1 provides

detailed information on the GWAS data sources.
MR assumptions and instrumental variable
selection

This two-sample Mendelian randomization analysis was

conducted in accordance with the latest Strengthening the

Reporting of Observational Studies in Epidemiology using

Mendelian Randomization (STROBE-MR) guideline (Figure 1)

(17). A causal association between TIA and CAD could be

inferred if three basic MR assumptions were satisfied: (1)

Instrumental variables (IVs) directly affected exposure (relevance

assumption); (2) IVs were not associated with other confounders

(independence assumption); (3) IVs affected the risks of outcomes

through exposure, not through other pathways (exclusivity

assumption). Instrumental variables were selected according to the

following criteria. First, genetic variants significantly associated

with TIA (P < 5 × 10−6) in a GWAS study were included. Second,

SNPs with a threshold linkage disequilibrium (LD) of r2 > 0.001

were excluded to ensure independence between SNPs. Third,

SNPs with an F-statistic less than 10 were excluded to avoid weak

IV bias. The following equation was used to calculate the

F-statistic: F = R2(N-K-1)/[K(1-R2)], where N denotes the GWAS

sample; K refers to the number of SNPs in the MR analysis; and

R2 is the cumulative explained variance of the selected SNPs (18).

Fourth, the MR-Steiger method was used to calculate the variance

explained by exposure and outcome to avoid reverse causality.

Fifth, if an SNP was unavailable in CAD traits, a proxy SNP (r2 >

0.8) was used. Finally, we searched for pleiotropic SNPs associated

with confounders on the PhenoScanner website (http://www.

phenoscanner.medschl.cam.ac.uk/) and used the remaining IVs for

further analysis. Supplementary Table S1 lists the characteristics

of the included IVs.
Statistical analyses

For univariable analysis, inverse-variance weighted (IVW)

analysis was used as the method for estimation of the causal

associations between TIA and CADs. The IVW method assumes

that all genetic variants are valid and is most statistically robust

when the average pleiotropic effect is zero (19). Considering the

potential heterogeneity, we used both the IVW-fixed and
frontiersin.org
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FIGURE 1

An overview of the present study design. (A) Three basic assumptions of the MR study; (B) Flow chart of study design.
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IVW-random effect models (20). Cochran’s Q test was used to

evaluate the heterogeneity between the genetic variants. To verify

the robustness of the results, we performed a sensitivity analysis

with alternative MR models including MR-Egger, weighted

median, and MR-PRESSO. The MR-Egger method introduces an

intercept term into the Egger regression model and can be used

to detect the average horizontal pleiotropy. Besides, this method

can produce a valid causal estimate even if all the IVs are invalid

(21). The weighted median method can provide a valid estimate

when 50% or more SNPs are valid IV (20). Additionally, the MR

Pleiotropy Residual Sum and Outlier (MR-PRESSO) test was

used for the detection of pleiotropic outliers and providing a

causal estimate after the removal of corresponding outliers (22).

Finally, the leave-one-out test was used to check whether the

causal association was affected by a single SNP (20). The MR

Steiger test was performed to estimate the potential reverse

causal relationship between TIA and CAD (23). For multivariable

MR, the multiplicative IVW random-effect model was used with

adjustment for traditional CAD risk factors including smoking,

hypertension, and diabetes.

Estimates of the effects of variables on the causal associations

between TIA and CAD are presented as odds ratios (ORs) with

95% confidential intervals (CIs). The “TwoSampleMR”,

“MVMR”, and “MR-PRESSO” packages in R software, version

4.2.2, were used to conduct this MR analysis.
Results

Characteristics of included SNPs

In this study, 18 SNPs were selected after filtering by the

significance threshold (P < 5 × 10−6) and removal of SNPs with
Frontiers in Cardiovascular Medicine 03
LD (r2 < 0.01, 10,000 kb). We searched the selected SNPs in the

PhenoScanner database to exclude SNPs linked to confounders.

One SNP, rs4776884, was excluded due to its association with

body fat, hip circumference, and basal metabolic rate. Two

SNPs were eliminated from the harmonization of TIA and

outcomes (CAA, MI, and IHD) because they were palindromic

and had intermediate allele frequencies (rs2461030,

rs117382396). Thus, 15 SNPs were finally included as the IVs

for TIA. The F-statistics for all SNPs were greater than 10.

Supplementary Tables S1, S2 show the characteristics of the

SNPs.
Causal association between TIA and CADs

The scatter plots in Figure 2 showed that the SNP effect on

CAA, MI, and IHD increased in correspondence with their

effect on TIA. The results of the causal association between

TIA and CADs are shown in Figure 3. In both the IVW

fixed and random effect models in the univariable MR

analysis, genetically predicted TIA was found to increase the

risk of CAA, MI, and IHD (OR = 1.17, P < 0.05; OR = 1.15,

P < 0.05; OR = 1.15, P < 0.05, respectively). In sensitivity

analyses, the association between TIA and CADs remained

consistent in the weighted median method (CAA: OR = 1.116,

P = 0.013; MI: OR = 1.20, P = 0.013; IHD: OR = 1.15, P =

0.015, respectively). However, the associations were not

significant in the MR-Egger analysis (P > 0.05). Further

multivariable MR analysis adjusted for hypertension, diabetes,

and smoking revealed consistent positive estimates for the

associations between TIA and CADs (CAA: OR = 1.38, P =

0.003; MI: OR = 1.31, P = 0.038; IHD: OR = 1.31, P = 0.004,

respectively).
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FIGURE 2

The scatter plots of MR analysis. (A) The scatter plot of the causality between TIA and CAA; (B) The scatter plot of the causality between TIA and MI; (C) The
scatter plot of the causality between TIA and IHD.

FIGURE 3

Forest plot of MR analysis.

TABLE 2 Analyses of heterogeneity and pleiotropy.

Outcome MR-PRESSO MR-Egger
intercept
(P val.)

Heterogeneity test

MR Egger
P val.

IVW
P val.

CAA 0.117 −0.001 (0.939) 0.097 0.07

MI 0.09 0.004 (0.816) 0.066 0.09

IHD 0.026 0.004 (0.755) 0.01 0.016

Qi et al. 10.3389/fcvm.2023.1192664
Heterogeneity and pleiotropy analyses

The results of the heterogeneity and pleiotropy analyses are

shown in Table 2. In the heterogeneity test, Cochran’s Q statistic
Frontiers in Cardiovascular Medicine 04
showed heterogeneity in the outcome of IHD (P < 0.05). Thus,

the IVW random-effect model was used, which indicated

consistent results. The MR-Egger intercept for all outcomes

showed no substantial pleiotropy (intercept P > 0.05). The MR-

PRESSO global test revealed significant horizontal pleiotropy in

the causal association between TIA and IHD but did not detect

any significant outliers. There was no evidence of horizontal

pleiotropic effects in the associations of TIA and other outcomes.

To analyze the effects of single SNPs, the leave-one-out method

was used, indicating that the causal association between TIA and

CADs was not driven by individual SNPs. The funnel plots and

leave-one-out analysis plots are shown in Supplementary

Figures S1, S2. The results of the MR Steiger test showed no

evidence of reverse causality (Supplementary Table S3).
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Discussion

This MR analysis demonstrated the causal relationship between

TIA and CAD. The results indicated that the genetic liability to

TIA was associated with a higher risk of CAD. The associations

remained robust after adjusting for hypertension, diabetes, and

smoking in the multivariable MR analysis.

Observational studies demonstrated a relationship between

TIA and CAD. In terms of short-term prognosis, CAD was a

major cause of hospital readmission within 30 days of an acute

stroke or TI, with a prevalence of 17.8% (24). Patients with TIA

should also be aware of the long-term risk of developing CAD. A

retrospective cohort study focusing on the 5-year outcomes for

TIA patients suggested that 53% had at least one cardiometabolic

condition (simultaneous coexistence of diabetes mellitus, CAD,

heart failure, or atrial fibrillation), and 32% developed CAD (25).

Results from the REACH registry of atherothrombosis show that

patients with a history of TIA/stroke had a higher rate of

cardiovascular events (HR 1.52, 95% CI 1.40–1.65) (26).

Furthermore, a previous meta-analysis of 58 studies revealed that

1.67% of individuals with a history of ischemic stroke or TIA are

at risk of developing MI (13). Although the risk of severe CAD

(such as MI) after TIA is low, asymptomatic CAD is prevalent in

patients with TIA. Previous research showed that asymptomatic

CAD is common in patients with cerebrovascular disease, with

40% of patients having severe CAD (greater than 70% stenosis)

(27). The Predicting Asymptomatic Coronary Artery Disease in

Patients With Ischemic Stroke and Transient Ischemic Attack

(PRECORIS) study showed that the prevalence of ≥50%
asymptomatic CAD is 18% (28). Another large-scale study on

Japanese ischemic stroke patients indicated that 23.7% were

diagnosed with myocardial ischemia after myocardial

scintigraphy (29). The present MR analysis provides new

evidence of the causal association between TIA and CADs using

large GWAS summary data. As the observational studies indicate

that TIA and stroke have similar cardiac complications, the

prevention of cardiac events in TIA patients could refer to the

integrated care approach to stroke. The importance of antiplatelet

and lipid-lowering therapy has been widely discussed, together

with the importance of maintaining a healthy lifestyle is also

essential (30). Excluding the integrated care approach, regular

follow-up of TIA patients could reduce the recurrence of

cardiovascular events (31).

For patients with CAD and TIA, atherosclerosis is considered

the main pathology. Therefore, common risk factors such as

hypertension, diet, smoking, and diabetes mellitus could increase

the incidence of CAD in TIA patients (8, 32). However, further

explanations for the association between TIA and CAD are

lacking. The heart-brain axis, which describes the interactions

between cardiovascular illness and the neurological system, could

be a potential explanation. Neurological disorders like ischemic

stroke produce oxidative stress, which causes a maladaptive

increase in sympathetic tone, resulting in arrhythmia or

myocardial ischemia (33). Besides, research showed that

neuroendocrine changes following TIA may impact the
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cardiovascular system. The abnormal activation of the

hypothalamic–pituitary–adrenal (HPA) axis induced by TIA may

cause hypercortisolism, which increases the risk of CAD by

affecting both coagulation and lipid metabolism (34). In a case-

control study, the data showed that patients with ischemic

cerebrovascular disease had reduced levels of high-density

lipoprotein (HDL) cholesterol (35). A prospective cohort study

including 792 patients who have suffered ischemic stroke/TIA

showed that patients with atherogenic dyslipidemia were at

higher risk of cardiovascular events (36). Alterations in lipid

metabolism have also been linked to endothelial dysfunction and

increased coagulation, both of which are risk factors for

recurrent vascular disease (37). Other potential mechanisms for

an increased risk of CAD following TIA include

hypercoagulation and thrombosis. The result of a cross-sectional

study showed that patients with previous TIA had higher overall

homeostatic and coagulation potentials, together with lower

overall fibrinolytic potential (38). Furthermore, a cohort study

that included 5,114 patients with cerebrovascular disease also

suggested that the risk of coronary events increased linearly with

fibrinogen levels (39). These mechanisms require further

investigation.

The strength of this study was that it is the first confirmation of

a causal relationship between TIA and CAD using two-sample MR

analysis. Additionally, we evaluated potential pleiotropy and

employed various methods to ensure consistency. Nevertheless,

the study has several limitations. First, the results from the

different MR methods were inconsistent with those using the

IVW method, despite the same overall trends shown by

the different estimates. Furthermore, the Cochran Q test for the

IVW method indicated heterogeneity. This led to the use of the

IVW-random effect model was conducted. Second, due to the

unavailability of original data, analysis of GWAS data from TIAs

of different etiologies was not possible. Third, the subjects of the

studies were of European ancestry only, and the results might

thus not necessarily be generalized to other ethnicities. Fourth,

the MR-PRESSO test showed evidence of pleiotropy in the

association between TIA and IHD. Although subsequent

multivariable analysis revealed significant estimates, the result

should be interpreted with caution. Fifth, the diagnosis of TIA

depends on the quality and quantity of information available and

the time of assessment and is thus primarily a clinical diagnosis.

Inaccurate descriptions from patients and incomplete

neurological examinations may result in different diagnoses (28).

However, the present MR analysis used summary-level GWAS

data of TIA cohorts from the FinnGen project. Potential

diagnostic bias in the original research is difficult to adjust. In

the future, diagnostic criteria for TIA should be comprehensive

and objective to reduce potential bias in observational studies.
Conclusion

In conclusion, the present study investigated the causal

relationship between TIA and CAD using MR analysis. The
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results showed that TIA could increase the risk of CAD. Further

studies are required to verify these conclusions and investigate

potential mechanisms.
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