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This paper derives a novel analytical solution for acoustic nonlinearity evaluation of the cracked interface. When microcracks exist
at the interface, the tensile and compressive effective moduli of the cracked interface are considered to be different. It is clearly
shown that the tension and compression elastic asymmetry can result in acoustic nonlinearity. In addition, numerical simulations
using the finite element method are conducted to validate the theoretical solution. It is shown that numerical results agree well with
the analytical solution. Finally, two factors affecting acoustic nonlinearity are studied based on the analytical solution. One is the
tension and compression elastic asymmetry and another is the frequency of incident wave. Different from acoustic nonlinearity
parameter of the general second harmonics, it is found that acoustic nonlinearity parameter is a function of two factors.

1. Introduction

Adhesion bonding technology for fiber reinforced composite
has been widely applied in aerospace industry. Generally,
the cohesive interface is very thin but can provide the
powerful strength and resiliency. However, the capability
of the cohesive interface could be greatly affected by the
imperfect condition, such as debond, fatigue damage, and
microcracks. Thus, there is a great need for development
of nondestructive testing methods to detect the imperfect
condition.

Nonlinear ultrasonic methods have the powerful ability
to characterize the material nonlinearity change caused
by plasticity [1], imperfect interface [2–4], microcracks [5,
6], and fatigue damage [7, 8]. When a time-harmonic
longitudinal wave propagates through a cracked solid or
interface, it will cause the tension and compression elastic
asymmetry; then the waveform will be distorted and higher-
order harmonicwaves are generated [9–11]. And considerable
experimental evidence [12, 13] has shown that ultrasonic
waves do interact with microcracks in a nonlinear fashion,
but those researches may fail when the crack size is only
tens of microns, which is one of the initial factors leading to
interface degradation.

For the researches on acoustic nonlinearity induced by
microcracks [14–16], majority are concentrated either on the
scattering of elastic waves by a single crack or an array
of cracks [17–20] or on the propagation of elastic waves
in a cracked medium [21–23]. The first study on such
contact-induced acoustic nonlinearity is probably the paper
by Richardson [24] who considered the contact interface
between two semi-infinite half-spaces. He has analyzed
one-dimensional nonlinear wave propagation in a system
composed of an unbounded planer interface separating two
semi-infinite linear elastic media. The nonlinearity is caused
by the opening and closing of the interface. However, in
Richardson’s analysis, the interface stiffness varying contin-
uously is not accounted for. Improving Richardson’s theory,
Biwa et al. [25] have analyzed a nonlinear interface stiffness
model, where the stiffness property of the contact interface
is described as a function of the nominal contact pressure.
Furthermore, by assuming the interface of the adhesive as
a nonlinear spring, Achenbach and Parikh [26] have inves-
tigated theoretically to obtain information on the adhesive
bond strength from ultrasonic test results, and it is shown
that the nonlinear adhesive bond behavior could cause the
generation of higher harmonics.
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In this paper, based on the researches of Richardson and
Biwa, one theoretical solution for one-dimensional nonlinear
wave propagation in a system composed of a multicrack-
included interface separating two semi-infinite elastic media
is derived, fromwhich the acoustic nonlinearity caused by the
tension and compression elastic asymmetry is clearly shown.
To validate the analytical solution, numerical results from
the FEM simulations are presented. Comparison between the
analytical predictions and the FEM simulation results shows
good agreement. Finally, we also study two factors affecting
acoustic nonlinearity. One is the tension and compression
elastic asymmetry of the cracked interface and another is the
frequency of incident wave.

2. Solution for Harmonic Wave Incidence

We consider a system composed of a cracked interface
separating two semi-infinite elastic media. In the presence
of microcracks, the interface will respond to the tensile and
compressive loadings differently, which is the tension and
compression elastic asymmetry. According to [11], the elastic
constants of the cracked medium can be considered to be
dependent with crack density, the friction of the crack faces,
and frequency of incident wave:
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where𝐸󸀠 and ]󸀠 are Young’smodulus and Poisson’s ratio of the
uncracked solid, respectively. And𝐸

𝛼
and ]
𝛼
are, respectively,

the corresponding effective Young’s modulus and Poisson’s
ratio of the cracked solid under tension (𝛼 = 𝑡) and under
compression (𝛼 = 𝑐). Meanwhile, 𝐸󸀠 = 𝐸 and ]󸀠 = ] for plane
stress, and 𝐸󸀠 = 𝐸/(1 − ]2) and ]󸀠 = ]/(1 − ]) for plane strain.
The crack density 𝑑 is defined as 𝑑 = 𝑁𝑎

2
/𝐴, where 𝑎 is the

average half-length of the cracks; 𝐴 is the area of the solid
containing 𝑁 randomly distributed and randomly oriented
two-dimensional microcracks.
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In the above, 𝛾 is the Euler-Mascheroni constant, 𝜂 =
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Therefore, in this paper, the conclusion of [11] will be
adopted, and the interface can be regarded as an equivalent
medium consisting of the random distribution cracks. Actu-
ally this assumption has been proven in [25] for investigating
the void inclusion medium subjected to the ultrasonic wave
loading conditions.

2.1.TheGeneral Solution. Firstly, we assume that the elasticity
of the cracked interface is a function of time, and the
stress in the interface is uniform. In Figure 1 we illustrate
a one-dimensional system schematically to consider elastic
longitudinal wave propagation along 𝑥-axis, where 𝑓(𝑥 − 𝑐𝑡)
and 𝑔(𝑥 − 𝑐𝑡) represent the incident and transmitted wave
functions, respectively. The blue area represents the cracked
interface.

The two semi-infinite elastic solids are located in the
regions 𝑥 < 0

− and 𝑥 > 0
+, respectively. The equation of

responses of the interface and the stress-strain relation are
defined as follows:
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Figure 1: One-dimensional simplistic model.

where 𝜌 is mass density, 𝐸
𝑠
(𝑡) is the longitudinal stiffness of

the cracked interface, 𝑢(𝑥, 𝑡) is the displacement in the 𝑥-
direction of an element at time 𝑡 from its position 𝑥, and
𝜎(𝑥, 𝑡) is the stress. The boundary conditions in locations 0−
and 0+ are as follows:

𝜎 (𝑡) = 𝜎 (0
−
, 𝑡) = 𝜎 (0
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, 𝑡) , (5)
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where ℎ is the thickness of the cracked interface.
According to [24, 25], the governing equation of (4)

can be solved based on travelling wave method. Therefore,
this paper will employ travelling wave method to obtain
the general displacement solution when longitudinal wave
propagates through the interface. Then considering the
cracked interface as the tension and compression elastic
asymmetry, this paper will achieve the corresponding special
displacement solution.

According to the travelling wave method, as a solution to
(4), the following forms are considered [24, 25]:

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥 − 𝑐𝑡) −
1

2
𝑉(𝑡 +

𝑥

𝑐
) , 𝑥 < 0

−
, (7)

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥 − 𝑐𝑡) +
1

2
𝑉(𝑡 −

𝑥

𝑐
) , 𝑥 ≥ 0

+
, (8)

𝑉 (𝑡) = 𝑢 (0
+
, 𝑡) − 𝑢 (0

−
, 𝑡) , (9)

where 𝑐 = √𝐸/𝜌 is the wave velocity, 𝐸 is the longitudinal
stiffness of the two semi-infinite elastic solids, 𝑓(𝑥 − 𝑐𝑡)

represents the incident waves, the term −(1/2)𝑉(𝑡 + 𝑥/𝑐)

represents reflected waves, and (8) represents the transmitted
waves. Equation (9) represents the equivalent displacement
of the cracked interface.

According to (6) and (9), we can obtain
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The incident wave 𝑓(𝑥 − 𝑐𝑡) is now assumed in the
following form:
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When we know the function form of 𝜉(𝑡), we can obtain
the special solution from (13).

2.2. The Special Solution. Assuming the different tensile and
compression effective moduli of the cracked interface from
[11], the function 𝐸
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is introduced to represent the tension and compression
asymmetry in the elastic moduli of the cracked interface.

According to (13) and (14), we can obtain

𝑉 (𝑡)

= 2𝐹
0
sin𝜑 [sin (𝜔𝑡

𝑛
+ 𝜑) 𝑒

−𝜉(𝑡−𝑡
𝑛
)
− sin (𝜔𝑡 + 𝜑)] ,

(15)

where 𝜑 = sin−1 (−𝜔/√𝜉2 + 𝜔2).
Since𝑉(𝑡

𝑛
) = 0 and the calculation could begin from 𝑡

0
=

0 without loss of generality, the time points 𝑡
𝑛+1

to switch the
property come from the following equation:

sin (𝜔𝑡
𝑛
+ 𝜑
𝑡
) 𝑒
−𝜉
𝑡
(𝑡
𝑛+1
−𝑡
𝑛
)
− sin (𝜔𝑡

𝑛+1
+ 𝜑
𝑡
) = 0

𝑛 = 0, 2, 4, . . .

sin (𝜔𝑡
𝑛
+ 𝜑
𝑐
) 𝑒
−𝜉
𝑐
(𝑡
𝑛+1
−𝑡
𝑛
)
− sin (𝜔𝑡

𝑛+1
+ 𝜑
𝑐
) = 0

𝑛 = 1, 3, 5, . . . .

(16)



4 Mathematical Problems in Engineering

The displacement becomes
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Substitution of (17) back to (7) and (8) gives the finial
displacement field of the problem.

3. Analytical and FEM Results

3.1. Analytical Results. Numerical solutions using Matlab are
performed to solve (16). For a demonstrative purpose, dashed
line in Figure 2 shows one example of transmitted waveforms
for an incident wave with the center frequency of 1MHz,
obtained by numerical solutions of (16) and (17), with the
parameters 𝜌 = 2700 kg/m3, 𝐸 = 7 × 1010 Pa, 𝐸𝑡

𝑠
= 7 × 10

9 Pa,
𝐸
𝑐

𝑠
= 7 × 10

10 Pa, 𝐹
0
= 1 × 10

−5m, and ℎ = 1 × 10
−4m.

The time-domain waveform with the dashed line is shown in
Figure 2(a), and the locals in Figures 2(b1) and 2(b2) are to
compare the difference of the displacement curve subjected to
the first-half and second-half waveform in one-cycle loading
conditions. It is seen that the first-half waveform in one cycle
is distinctly different from the second-half waveform caused
by the tension and compression elastic asymmetry. And
Figure 2(c) shows the frequency spectrumusing FFTmethod;
it is clearly shown that the transmitted wave contains the
term with angular frequency 2𝜔, which is second harmonic
generated by the cracked interface.

3.2. Comparison with FEM Results. The analytical solutions
will be validated in this section by conducting numerical
simulations of wave propagation through a cracked interface.
The numerical simulations are performed using the finite
elementmethod (FEM) for the case of two-dimensional plane
strain deformation.The commercial FEM software ABAQUS
is used for this purpose.

To this end, a two-dimensional FEMmodel is constructed
using the four-node plane strain (CPE4R) elements. To
simulate plane waves, a rectangular strip of 0.09m × 0.003m
is used in our FEM model. The model consists of ∼300,000
four-node plane strain (CPE4R) elements. The user defined
constitutive law is performed to present the different tension
and compression elasticity of the cracked interface. And the
interface is located in the middle of the sample with the
thickness of 1×10−4m.Other regions are the isotropic elastic

material of aluminum.A plane longitudinal wave is generated
from one end of the sample.The amplitude longitudinal wave
with the frequency of 1MHz is 1 × 10−5m. The receiver is
located at right end of the interface.

Shown in Figure 2(a) with the solid line is the FEM result
of time-domain waveform of transmitted wave.The excellent
comparison shows that the analytical solution results are
identical to that of the FEM simulation. Furthermore, the two
obvious amplitudes, being 9.37 × 10−6m and 7.76 × 10−7m,
respectively, exist with the frequencies of ultrasonic wave at
1MHz and 2MHz in Figure 2(c).

4. Acoustic Nonlinearity Parameter

The time-domain waveform curve can be obtained by the
analytical solution derived in Section 2; then the frequency
spectrum using FFT method can also be solved to obtain 𝐴

1

and 𝐴
2
, which are the amplitudes of the fundamental and

second harmonic, respectively. Through the analysis of data
from the analytical solution, we can obtain several observa-
tions. First, 𝐴

2
is linearly related to 𝐴

1
. This is significantly

different from the second harmonic generated by quadratic
nonlinearity in the solid, where 𝐴

2
is proportional to the

square of𝐴
1
.The fundamental cause of this relationship is the

tension and compression elastic asymmetry of the cracked
interface. Second, 𝐴

2
is scaled by parameter 𝛾. Therefore,

according to [9], for acoustic nonlinearity parameter in
cracked solids, the similar acoustic nonlinearity parameter of
the cracked interface is introduced by

𝛽 =
3𝜋𝐴
2

𝐴
1
𝑘ℎ
. (19)

For investigating the relation between the linearity
parameter and the frequencies of the ultrasonic acoustic,
a series of analytic solutions have been performed under
different frequencies including 0.5MHz, 1MHz, 1.5MHz,
2.0MHz, and 2.5MHz. Figure 3 shows the acoustic nonlin-
earity parameter versus frequency. It is seen that although
the acoustic nonlinearity parameter decreases linearly with
increasing frequency, the decrease is not significant. In other
words, the acoustic nonlinearity parameter has a rather weak
dependence on frequency.

Figure 4 shows the acoustic nonlinearity parameter ver-
sus parameter 𝛾. It is seen that the acoustic nonlinearity
parameter increases linearly with increasing 𝛾, which can
represent the degree of damage for the cracked interface. In
other words, the degree of damage for the cracked interface
can be characterized by the acoustic nonlinearity parameter
defined as (19).
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(c) Frequency spectrum using FFT method
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Figure 2: Waveforms (a), (b1), and (b2) and frequency spectrum (c) of transmitted wave at location 𝑥 = 0+.
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Figure 4: Acoustic nonlinearity parameter versus parameter 𝛾.

5. Conclusions

As a time-harmonic longitudinal wave propagates in a system
composed of a cracked interface separating two semi-infinite
elastic media, a second harmonic wave may be generated
by the cracked interface. Assuming the longitudinal stiffness
of the interface as a function of time, this paper solves the
problem and obtains the analytical general solution (any
interface) and the special solution (the cracked interface).
It is clearly shown that the tension and compression elastic
asymmetry can result in acoustic nonlinearity. Furthermore,
to verify the developed theoretical solution, we carry out
detailed numerical simulation of wave propagation through
a cracked interface by using the FEM. The results indicate
that the micromechanics model predictions agree well with
the FEM simulations. Finally, because the amplitude of
the second harmonic is linearly related to the amplitude
of the fundamental harmonic, we introduce the acoustic
nonlinearity parameter induced by the cracked interface
based on the analytical solution. It is shown that acoustic
nonlinearity parameter is a function of two factors, which

are the tension/compression elastic asymmetry and the fre-
quency of incident wave, respectively. This study is beneficial
to develop nonlinear ultrasonic quantitative NDE techniques
for assessing microcrack-induced damage of interfaces.

In future, we will design and develop the reasonable
experiments to validate the solution of this paper.
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