14 research outputs found

    The Effect of Fineness on the Hydration Activity Index of Ground Granulated Blast Furnace Slag

    No full text
    To improve the properties of ground granulated blast furnace slag (GGBS) and utilize ground granulated blast furnace slag efficiently, this study investigates the effect of fineness on the hydration activity index (HAI) of ground granulated blast furnace slag. The hydration activity index of GGBS with six specific surface areas (SSAs) was characterized by the ratio of compressive strength of the prismatic mortar test block. The particle size distribution of GGBS with different grinding times was tested by laser particle size analyzer. The paste of different specific surface area GGBSs in different curing ages was investigated at the micro level by X-ray diffraction, scanning electron microscope, energy dispersive spectrometer, thermogravimetric scanning calorimeter, and differential scanning calorimeter. The effect of particle distribution of GGBS on the hydration activity index of different curing ages was studied by gray correlation analysis. The results indicated that the compressive strength and hydration activity index increases with the increase of a specific surface area of GGBS at different curing ages. The hydration activity index at different curing ages is almost a linear role for specific surface areas. With the increase in the specific surface area of GGBS, the content of Ca(OH)2 in paste decreases gradually. When GGBS was added into a mortar test block, the hydrate calcium silicate gel in paste changed from a high Ca/Si ratio to a low Ca/Si ratio. The 0–10 micron particles of GGBS particle distribution were highly correlated with the hydration activity index at different curing ages

    Effects of the graphene content on mechanical properties and corrosion resistance of aluminum matrix composite

    No full text
    Graphene with excellent mechanical and physical properties has shown its great application potential in aluminum matrix composites. In this paper, graphene oxide nanosheets with negative charges were fabricated by the Hummers' method and they are absorbed on the treated aluminum powders with positive charges by electrostatic self-assembly. Then, graphene reinforced aluminum matrix composites (Gr/Al) were prepared by powder metallurgy. The effects of the Gr content on mechanical performance and corrosion resistance were investigated. The results show that Gr is distributed at the boundary and bonds well with aluminum in Gr/Al composite. Mechanical properties of the composite initially increase then decrease with the increase of Gr content. When the Gr content reaches 0.3 wt%, the ultimate tensile strength reaches 110 MPa and the wear coefficient is 0.39. However, the corrosion resistance decreases with increasing the Gr content and the corrosion mechanism is also investigated in details

    The Distal Promoter of the <i>B438L</i> Gene of African Swine Fever Virus Is Responsible for the Transcription of the Alternatively Spliced <i>B169L</i>

    No full text
    The B169L protein (pB169L) of African swine fever virus (ASFV) is a structural protein with an unidentified function during the virus replication. The sequences of the B169L gene and the downstream B438L gene are separated by short intergenic regions. However, the regulatory mode of the gene transcription remains unknown. Here, we identified two distinct promoter regions and two transcription start sites (TSSs) located upstream of the open reading frame (ORF) of B438L. Using the promoter reporter system, we demonstrated that the cis activity of the ORF proximal promoter exhibited significantly higher levels compared with that of the distal promoter located in the B169L gene. Furthermore, transfection with the plasmids with two different promoters for B438L could initiate the transcription and expression of the B438L gene in HEK293T cells, and the cis activity of the ORF proximal promoter also displayed higher activities compared with the distal promoter. Interestingly, the B438L distal promoter also initiated the transcription of the alternatively spliced B169L mRNA (B169L mRNA2) encoding a truncated pB169L (tpB169L) (amino acids 92–169), and the gene transcription efficiency was increased upon mutation of the initiation codon located upstream of the alternatively spliced B169L gene. Taken together, we demonstrated that the distal promoter of B438L gene initiates the transcription of both the B438L mRNA and B169L mRNA2. Comprehensive analysis of the transcriptional regulatory mode of the B438L gene is beneficial for the understanding of the association of B438L protein and pB169L and the construction of the gene-deleted ASFV

    HuR Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating Myomaker mRNA Stability

    No full text
    Human antigen R (HuR) is an RNA-binding protein that contributes to a wide variety of biological processes and diseases. HuR has been demonstrated to regulate muscle growth and development, but its regulatory mechanisms are not well understood, especially in goats. In this study, we found that HuR was highly expressed in the skeletal muscle of goats, and its expression levels changed during longissimus dorsi muscle development in goats. The effects of HuR on goat skeletal muscle development were explored using skeletal muscle satellite cells (MuSCs) as a model. The overexpression of HuR accelerated the expression of myogenic differentiation 1 (MyoD), Myogenin (MyoG), myosin heavy chain (MyHC), and the formation of myotubes, while the knockdown of HuR showed opposite effects in MuSCs. In addition, the inhibition of HuR expression significantly reduced the mRNA stability of MyoD and MyoG. To determine the downstream genes affected by HuR at the differentiation stage, we conducted RNA-Seq using MuSCs treated with small interfering RNA, targeting HuR. The RNA-Seq screened 31 upregulated and 113 downregulated differentially expressed genes (DEGs) in which 11 DEGs related to muscle differentiation were screened for quantitative real-time PCR (qRT-PCR) detection. Compared to the control group, the expression of three DEGs (Myomaker, CHRNA1, and CAPN6) was significantly reduced in the siRNA-HuR group (p < 0.01). In this mechanism, HuR bound to Myomaker and increased the mRNA stability of Myomaker. It then positively regulated the expression of Myomaker. Moreover, the rescue experiments indicated that the overexpression of HuR may reverse the inhibitory impact of Myomaker on myoblast differentiation. Together, our findings reveal a novel role for HuR in promoting muscle differentiation in goats by increasing the stability of Myomaker mRNA

    METTL3 Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating MEF2C mRNA Stability in a m<sup>6</sup>A-Dependent Manner

    No full text
    The development of mammalian skeletal muscle is a highly complex process involving multiple molecular interactions. As a prevalent RNA modification, N6-methyladenosine (m6A) regulates the expression of target genes to affect mammalian development. Nevertheless, it remains unclear how m6A participates in the development of goat muscle. In this study, methyltransferase 3 (METTL3) was significantly enriched in goat longissimus dorsi (LD) tissue. In addition, the global m6A modification level and differentiation of skeletal muscle satellite cells (MuSCs) were regulated by METTL3. By performing mRNA-seq analysis, 8050 candidate genes exhibited significant changes in expression level after the knockdown of METTL3 in MuSCs. Additionally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that myocyte enhancer factor 2c (MEF2C) mRNA contained m6A modification. Further experiments demonstrated that METTL3 enhanced the differentiation of MuSCs by upregulating m6A levels and expression of MEF2C. Moreover, the m6A reader YTH N6-methyladenosine RNA binding protein C1 (YTHDC1) was bound and stabilized to MEF2C mRNA. The present study reveals that METTL3 enhances myogenic differentiation in MuSCs by regulating MEF2C and provides evidence of a post-transcriptional mechanism in the development of goat skeletal muscle

    The E301R protein of African swine fever virus functions as a sliding clamp involved in viral genome replication

    No full text
    ABSTRACT African swine fever virus (ASFV) is a complex nucleocytoplasmic, large DNA virus that infects both domestic pigs and wild boar, but little is known about the process of genomic replication. The E301R protein (pE301R) from ASFV was previously predicted as a proliferating cell nuclear antigen (PCNA)-like protein through clamping DNA polymerase to the DNA duplex, but its exact structure and functions remain uncharacterized. Here, the crystal structure of pE301R revealed that it is composed of structurally similar head and tail domains and shares significant structural similarities to the DNA polymerase processivity factors, including sliding clamp and eukaryotic PCNA. More specifically, we demonstrated that pE301R exhibited multiple oligomeric states (with dimers and tetramers dominant), and the tetramers are consistent with the ring-shaped homotetramers in a head-to-tail manner generated by crystal packing. We also showed that pE301R interacted with the ASFV genome and viral DNA polymerase O174L. Furthermore, knockdown of E301R by specific small interfering RNAs (siRNAs) significantly decreased the virus genomic replication. Interestingly, the downregulation of PCNA by siRNAs significantly decreased the cell viability, whereas the inhibitory effect was reversed by pE301R overexpression. Notably, we demonstrated that overexpression of PCNA partially restored ASFV replication upon transfection of siRNAs targeting E301R. More importantly, T2 amino alcohol, a PCNA-specific inhibitor, markedly inhibited ASFV replication at the stage of viral genome replication. Taken together, we revealed that pE301R functions as a sliding clamp in ASFV genomic replication and can be used as a potential antiviral target. IMPORTANCE Sliding clamp is a highly conserved protein in the evolution of prokaryotic and eukaryotic cells. The sliding clamp is required for genomic replication as a critical co-factor of DNA polymerases. However, the sliding clamp analogs in viruses remain largely unknown. We found that the ASFV E301R protein (pE301R) exhibited a sliding clamp-like structure and similar functions during ASFV replication. Interestingly, pE301R is assembled into a unique ring-shaped homotetramer distinct from sliding clamps or proliferating cell nuclear antigens (PCNAs) from other species. Notably, the E301R gene is required for viral life cycle, but the pE301R function can be partially restored by the porcine PCNA. This study not only highlights the functional role of the ASFV pE301R as a viral sliding clamp analog, but also facilitates the dissection of the complex replication mechanism of ASFV, which provides novel clues for developing antivirals against ASF
    corecore