8 research outputs found

    CCL20/CCR6 axis mediates macrophages to promote proliferation and migration of ESCs by blocking autophagic flux in endometriosis

    No full text
    Abstract Background Endometriosis (EMs) is a common benign gynecological disease that affects approximately 10% of females of reproductive age. Endometriosis ectopic lesions could recruit macrophages, which in turn facilitates endometriosis progression. Several studies have indicated that CCL20 derived from macrophages activates the expression of CCR6 in several cells and induces cell proliferation and migration. However, the function of the CCL20/CCR6 axis in the interactions between macrophages and endometriotic stromal cells (ESCs) in EMs has yet to be elucidated. Methods Ectopic and normal endometrial tissues were collected from 35 ovarian endometriosis patients and 21 control participants for immunohistochemical staining. It was confirmed that macrophages secreted CCL20 to promote CCR6 activation of ESCs during co-culture by ELISA, qRT-PCR and western blot analysis. CCK8 and Edu assays were used to detect cell proliferation, and wound healing and Transwell assay were used to detect cell migration. Autophagic flux was detected by measuring the protein expression levels of LC3 and P62by western blot and analyzing the red/yellow puncta after ESCs were transfected with mRFP-GFP-LC3 double fluorescence adenovirus (Ad‐LC3). Lysosomal function was tested by quantifying the fluorescent intensities of Lyso-tracker and Gal3 and activity of acid phosphatase. In addition, co-IP experiments verified the binding relationship between CCR6 and TFEB. Finally, the suppressive effect of CCL20-NAb on endometriosis lesions in vivo was demonstrated in mice models. Results We demonstrated that macrophages secreted CCL20 to promote CCR6 activation of ESCs during co-culture, which further induced the proliferation and migration of ESCs. We observed that the CCL20/CCR6 axis impaired lysosomal function and then blocked the autolysosome degradation process of autophagic flux in ESCs. The combination of CCR6 and TFEB to inhibit TFEB nuclear translocation mediates the role of the CCL20/CCR6 axis in the above process. We also found that co-culture with ESCs upregulated the production and secretion of CCL20 by macrophages. The suppression effect of CCL20-NAb on endometriosis lesions in vivo was demonstrated in mice models. Conclusions Our data indicate that macrophages block TFEB-mediated autolysosome degradation process of autophagic flux in ESCs via the CCL20/CCR6 axis, thereby promoting ESC proliferation and migration

    Lithium isotopic features of Quaternary basaltic saprolite, Zhanjiang, China: Atmospheric input and clay-mineral adsorption

    No full text
    Silicate weathering, in particular basalt, accounting only for one-sixth of the continental crust volume, accounts for one-third of atmospheric CO2 drawn down during weathering, as such, playing an important role in long-term carbon cycling. Li contents and isotopic compositions of a tropical regolith developed on young basalt (ca. 1 Ma) were investigated to elucidate Li isotopic fractionation during basalt weathering so as to trace basalt weathering. Li isotopic composition of sand from Asian dust-source regions and local dust near the basaltic saprolite weathering profile were studied as possible atmospheric contributors of Li to the saprolite. Saprolite has delta Li-7 values of -6.8% to -2.2%, which is much lighter than that of fresh basalt (+3.5%). Approximately 30% of the Li was lost from the upper saprolite profile, without significant isotopic fractionation. Lithium is enriched at the bottom of the profile, showing the lightest Li isotopic composition (delta Li-7=-6.6% to-2.6%). Calculations indicates that marine aerosols are the main source of atmospheric Li input to the profile. Adsorption of Li by secondary minerals results Li isotopic fractionation, accompanying desorption and resorption of Li by secondary minerals, resulting enriched Li and light Li isotopic composition in the regolith. A model established that Li isotopes showed sensitivity to continental weathering, supporting that Li isotopes can serve as an indicator of continental weathering. Continental weathering in the study area recorded the reasons of heavier Li isotopic composition of river water and seawater suggesting that Li isotopes can be used to study the circulation of materials on the Earth's surface. This has a guiding role in studying the Li isotopic composition of shale and rivers. The influence of temperature and precipitation on the fractionation behavior of lithium isotopes during silicate weathering warrants further investigation. (C) 2021 Elsevier B.V. All rights reserved

    Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation

    No full text
    Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of phase segregation. Through detailed characterization of the buried interface, we demonstrate that Me-4PACz enhances perovskite photostability, surpassing the performance of PTAA. Nanoscale analyses using in situ Kelvin probe force microscopy and quantitative nanomechanical mapping techniques elucidate defect distribution at the buried interface during phase segregation, highlighting the critical role of substrate wettability in perovskite growth and interface integrity. The integration of these characterization techniques provides a thorough understanding of the impact of the buried bottom interface on perovskite growth and phase segregation

    Soil Remediation of Subtropical Garden Grasses and Shrubs Using High-Performance Ester Materials

    No full text
    Soil erosion due to rainstorms is a serious problem in subtropical gardens in South China. Soil conservation and the restoration of degraded landscapes are important research topics at home and abroad. Because of the sluggish growth of plants under traditional cultivation techniques, they are incapable of effectively protecting the soil. Therefore, the rapid and high-quality soil conservation of subtropical landscapes remains an urgent problem to be overcome. The purpose of this study is to improve the red soil and ground environment for the growth of grasses and shrubs through high-performance ester materials. Our objective was to find a solution for the high impact of soil loss on subtropical landscapes. In this study, we used the ecological restoration of soil as the starting point and selected a typical subtropical garden in South China as the field test point. We carried out soil erosion resistance testing using high-performance ester materials. The anti-erosion abilities of slopes under various working conditions are discussed. During the growth period, the soil indexes were monitored for a long time, and the growth of grasses and shrubs was compared. The obtained monitoring data were analyzed with mathematical statistics. We found that the addition of high-performance ester materials significantly reduced soil loss by 52.60%. High-performance ester materials have a good hydrothermal regulation function, which can promote the germination and later growth of sloping plants. The decrease in ground internal density promotes the extension of plant roots. High-performance ester materials can improve soil permeability and activity and promote vegetation growth. In terms of turf thickness and overall growth as well as shrubs crown width and height, high-performance ester materials have a beneficial effect on promoting plant growth. Soil remediation using high-performance ester materials has good economic value, high water-holding capacity, adaptability, and convenience. In this study, we determined a solution for the high impact of soil loss on subtropical landscapes. The soil remediation of a subtropical garden using high-performance ester materials was successful. The practice of landscape soil remediation engineering presented in this paper can provide a reference for typical landscape soil remediation in subtropical zones

    Soil Remediation of Subtropical Garden Grasses and Shrubs Using High-Performance Ester Materials

    No full text
    Soil erosion due to rainstorms is a serious problem in subtropical gardens in South China. Soil conservation and the restoration of degraded landscapes are important research topics at home and abroad. Because of the sluggish growth of plants under traditional cultivation techniques, they are incapable of effectively protecting the soil. Therefore, the rapid and high-quality soil conservation of subtropical landscapes remains an urgent problem to be overcome. The purpose of this study is to improve the red soil and ground environment for the growth of grasses and shrubs through high-performance ester materials. Our objective was to find a solution for the high impact of soil loss on subtropical landscapes. In this study, we used the ecological restoration of soil as the starting point and selected a typical subtropical garden in South China as the field test point. We carried out soil erosion resistance testing using high-performance ester materials. The anti-erosion abilities of slopes under various working conditions are discussed. During the growth period, the soil indexes were monitored for a long time, and the growth of grasses and shrubs was compared. The obtained monitoring data were analyzed with mathematical statistics. We found that the addition of high-performance ester materials significantly reduced soil loss by 52.60%. High-performance ester materials have a good hydrothermal regulation function, which can promote the germination and later growth of sloping plants. The decrease in ground internal density promotes the extension of plant roots. High-performance ester materials can improve soil permeability and activity and promote vegetation growth. In terms of turf thickness and overall growth as well as shrubs crown width and height, high-performance ester materials have a beneficial effect on promoting plant growth. Soil remediation using high-performance ester materials has good economic value, high water-holding capacity, adaptability, and convenience. In this study, we determined a solution for the high impact of soil loss on subtropical landscapes. The soil remediation of a subtropical garden using high-performance ester materials was successful. The practice of landscape soil remediation engineering presented in this paper can provide a reference for typical landscape soil remediation in subtropical zones

    Multichannel Flexible Pulse Perception Array for Intelligent Disease Diagnosis System

    No full text
    Pressure sensors with high sensitivity, a wide linear range, and a quick response time are critical for building an intelligent disease diagnosis system that directly detects and recognizes pulse signals for medical and health applications. However, conventional pressure sensors have limited sensitivity and nonideal response ranges. We proposed a multichannel flexible pulse perception array based on polyimide/multiwalled carbon nanotube–polydimethylsiloxane nanocomposite/polyimide (PI/MPN/PI) sandwich-structure pressure sensor that can be applied for remote disease diagnosis. Furthermore, we established a mechanical model at the molecular level and guided the preparation of MPN. At the structural level, we achieved high sensitivity (35.02 kPa–1) and a broad response range (0–18 kPa) based on a pyramid-like bilayer microstructure with different upper and lower surfaces. A 27-channel (3 × 9) high-density sensor array was integrated at the device level, which can extract the spatial and temporal distribution information on a pulse. Furthermore, two intelligent algorithms were developed for extracting six-dimensional pulse information and automatic pulse recognition (the recognition rate reaches 97.8%). The results indicate that intelligent disease diagnosis systems have great potential applications in wearable healthcare devices
    corecore