5 research outputs found

    Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cave-dwelling bats in Gabon: Diversity, dynamics and potential role in Polychromophilus melanipherus transmission

    Full text link
    Background Evidence of haemosporidian infections in bats and bat flies has motivated a growing interest in characterizing their transmission cycles. In Gabon (Central Africa), many caves house massive colonies of bats that are known hosts of Polychromophilus Dionisi parasites, presumably transmitted by blood-sucking bat flies. However, the role of bat flies in bat malaria transmission remains under-documented. Methods An entomological survey was carried out in four caves in Gabon to investigate bat fly diversity, infestation rates and host preferences and to determine their role in Polychromophilus parasite transmission. Bat flies were sampled for 2–4 consecutive nights each month from February to April 2011 (Faucon and Zadie caves) and from May 2012 to April 2013 (Kessipoughou and Djibilong caves). Bat flies isolated from the fur of each captured bat were morphologically identified and screened for infection by haemosporidian parasites using primers targeting the mitochondrial cytochrome b gene. Results Among the 1,154 bats captured and identified as Miniopterus inflatus Thomas (n = 354), Hipposideros caffer Sundevall complex (n = 285), Hipposideros gigas Wagner (n = 317), Rousettus aegyptiacus Geoffroy (n = 157, and Coleura afra Peters (n = 41), 439 (38.0 %) were infested by bat flies. The 1,063 bat flies recovered from bats belonged to five taxa: Nycteribia schmidlii scotti Falcoz, Eucampsipoda africana Theodor, Penicillidia fulvida Bigot, Brachytarsina allaudi Falcoz and Raymondia huberi Frauenfeld group. The mean infestation rate varied significantly according to the bat species (ANOVA, F (4,75) = 13.15, P < 0.001) and a strong association effect between bat fly species and host bat species was observed. Polychromophilus melanipherus Dionisi was mainly detected in N. s. scotti and P. fulvida and less frequently in E. africana, R. huberi group and B. allaudi bat flies. These results suggest that N. s. scotti and P. fulvida could potentially be involved in P. melanipherus transmission among cave-dwelling bats. Sequence analysis revealed eight haplotypes of P. melanipherus. Conclusions This work represents the first documented record of the cave-dwelling bat fly fauna in Gabon and significantly contributes to our understanding of bat fly host-feeding behavior and their respective roles in Polychromophilus transmission. (RĂ©sumĂ© d'auteur

    “Show me which parasites you carry and I will tell you what you eat”, or how to infer the trophic behavior of hematophagous arthropods feeding on wildlife

    No full text
    International audienceMost emerging infectious diseases are zoonoses originating from wildlife among which vector-borne diseases constitute a major risk for global human health. Understanding the transmission routes of mosquito-borne pathogens in wildlife crucially depends on recording mosquito blood-feeding patterns. During an extensive longitudinal survey to study sylvatic anophelines in two wildlife reserves in Gabon, we collected 2,415 mosquitoes of which only 0.3% were blood-fed. The molecular analysis of the blood meals contained in guts indicated that all the engorged mosquitoes fed on wild ungulates. This direct approach gave only limited insights into the trophic behavior of the captured mosquitoes. Therefore, we developed a complementary indirect approach that exploits the occurrence of natural infections by host-specific haemosporidian parasites to infer Anopheles trophic behavior. This method showed that 74 infected individuals carried parasites of great apes (58%), ungulates (30%), rodents (11%) and bats (1%). Accordingly, on the basis of haemosporidian host specificity, we could infer different feeding patterns. Some mosquito species had a restricted host range (An. nili only fed on rodents, whereas An. carnevalei, An. coustani, An. obscurus, and An. paludis only fed on wild ungulates). Other species had a wider host range (An. gabonensis could feed on rodents and wild ungulates, whereas An. moucheti and An. vinckei bit rodents, wild ungulates and great apes). An. marshallii was the species with the largest host range (rodents, wild ungulates, great apes, and bats). The indirect method substantially increased the information that could be extracted from the sample by providing details about host-feeding patterns of all the mosquito species collected (both fed and unfed). Molecular sequences of hematophagous arthropods and their parasites will be increasingly available in the future; exploitation of such data with the approach we propose here should provide key insights into the feeding patterns of vectors and the ecology of vector-borne diseases

    Experimental infections with Zika virus strains reveal high vector competence of Aedes albopictus and Aedes aegypti populations from Gabon (Central Africa) for the African virus lineage

    No full text
    International audienceThe two main Zika virus (ZIKV) vectors, Aedes albopictus and Aedes aegypti (invasive and native species, respectively), are present in Gabon (Central Africa). The aim of this study was to determine the entomological ZIKV risk associated with these mosquito species in Gabon by evaluating their vector competence for an African (i.e. representative of the endemic strains circulating in sub-Saharan Africa) and two Asian (i.e. representatives of exogenous epidemic strains that could be introduced) ZIKV strains. The transmission efficiency of one Ae. aegypti and two Ae. albopictus field-collected populations from Libreville and Franceville was assayed at day 7, 14 and 21 after experimental oral infection. The two mosquito species could transmit all three ZIKV strains already at day 7 post-infection, but transmission efficiency was higher for the African strain than the non-African strains (>60% versus <14%; incubation period of 14-21 days). The two mosquito species exhibited comparable vector competence for ZIKV, although the amount of viral particles (African strain) in saliva was significantly higher in Ae. albopictus than Ae. aegypti at day 14 post-infection. These findings suggest that overall, ZIKV risk in Gabon is mainly related to virus strains that circulate endemically across sub-Saharan Africa, although the transmission of non-African strains remain possible in case of introduction. Due to its high infestation indexes and ecological/geographical ranges, this risk appears mainly associated with Ae. albopictus. Vector surveillance and control methods against this invasive mosquito must be strengthened in the region to limit the risk of future outbreaks
    corecore