32 research outputs found

    Assessment of Microwave/UV/O3 in the Photo-Catalytic Degradation of Bromothymol Blue in Aqueous Nano TiO2 Particles Dispersions

    Get PDF
    In this study, a microwave/UV/TiO2/ozone/H2O2 hybrid process system, in which various techniques that have been used for water treatment are combined, is evaluated to develop an advanced technology to treat non-biodegradable water pollutants efficiently. In particular, the objective of this study is to develop a novel advanced oxidation process that overcomes the limitations of existing single-process water treatment methods by adding microwave irradiation to maximize the formation of active intermediate products, e.g., OH radicals, with the aid of UV irradiation by microwave discharge electrodeless lamp, photo-catalysts, and auxiliary oxidants. The results of photo-catalytic degradation of BTB showed that the decomposition rate increased with the TiO2 particle dosages and microwave intensity. When an auxiliary oxidant such as ozone or hydrogen peroxide was added to the microwave-assisted photo-catalysis, however, a synergy effect that enhanced the reaction rate considerably was observed

    Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach

    Get PDF
    Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics

    Travel burden and clinical presentation of retinoblastoma: analysis of 1024 patients from 43 African countries and 518 patients from 40 European countries

    Get PDF
    BACKGROUND: The travel distance from home to a treatment centre, which may impact the stage at diagnosis, has not been investigated for retinoblastoma, the most common childhood eye cancer. We aimed to investigate the travel burden and its impact on clinical presentation in a large sample of patients with retinoblastoma from Africa and Europe. METHODS: A cross-sectional analysis including 518 treatment-naïve patients with retinoblastoma residing in 40 European countries and 1024 treatment-naïve patients with retinoblastoma residing in 43 African countries. RESULTS: Capture rate was 42.2% of expected patients from Africa and 108.8% from Europe. African patients were older (95% CI -12.4 to -5.4, p<0.001), had fewer cases of familial retinoblastoma (95% CI 2.0 to 5.3, p<0.001) and presented with more advanced disease (95% CI 6.0 to 9.8, p<0.001); 43.4% and 15.4% of Africans had extraocular retinoblastoma and distant metastasis at the time of diagnosis, respectively, compared to 2.9% and 1.0% of the Europeans. To reach a retinoblastoma centre, European patients travelled 421.8 km compared to Africans who travelled 185.7 km (p<0.001). On regression analysis, lower-national income level, African residence and older age (p<0.001), but not travel distance (p=0.19), were risk factors for advanced disease. CONCLUSIONS: Fewer than half the expected number of patients with retinoblastoma presented to African referral centres in 2017, suggesting poor awareness or other barriers to access. Despite the relatively shorter distance travelled by African patients, they presented with later-stage disease. Health education about retinoblastoma is needed for carers and health workers in Africa in order to increase capture rate and promote early referral

    A New ellagitannin from the fruit of Phyllanthus emblica L.

    No full text
    A new ellagitannin along with eight known compounds has been isolated from the ethanol extract of the fruit of Phyllanthus emblica L. The chemical structure of the new compound was established as Phyllanthunin (1) by HR-ESI-MS, 1D and 2D NMR spectroscopic analysis

    Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900

    Get PDF
    The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1±29.4 gigatonnes per year), 1983-2003 (73.8±40.5 gigatonnes per year), and 2003-2010 (186.4±18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0±9.4millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to predict global sea level rise

    Vibrational and AFM studies of adsorption of glycine on DLC and silicon-doped DLC

    No full text
    A better understanding of protein adsorption onto surfaces of materials is required to control biocompatibility and bioactivity. Diamond-like carbon (DLC) is known to have excellent biocompatibility. Various samples of a-C:H and silicon-doped a-C:H thin films (Si-DLC) were deposited onto silicon substrates using plasma-enhanced chemical vapour deposition (PECVD). Subsequently, the adsorption of the simplest amino acid glycine onto the surfaces of the thin films was investigated to elucidate the mechanisms involved in protein adhesion. The physicochemical characteristics of the surfaces, before and after adsorption of glycine, were investigated using Raman spectroscopy and atomic force microscopy (AFM). The Raman study highlighted a slight decrease in the I D/I G ratio with increasing the silicon dopant levels. Following exposure to glycine solutions, the presence of bands at ~1735 and ~1200 cm−1 indicates that the adsorption of glycine onto the surfaces has taken place. Glycine was bound to the surfaces via both deprotonated carboxyl and protonated amino groups whilst, as the silicon content in the DLC film increased the adsorption of glycine decreased. AFM analysis showed that the surface roughness increased following exposure to glycine. These results show that at low silicon doping the adsorption of the amino acid was enhanced whilst increased doping levels led to a reduced adsorption compared to undoped DLC. Therefore, doping of DLC may provide an approach to control the protein adsorption
    corecore