63 research outputs found

    designGG:an R-package and web tool for the optimal design of genetical genomics experiments

    Get PDF
    BACKGROUND: High-dimensional biomolecular profiling of genetically different individuals in one or more environmental conditions is an increasingly popular strategy for exploring the functioning of complex biological systems. The optimal design of such genetical genomics experiments in a cost-efficient and effective way is not trivial. RESULTS: This paper presents designGG, an R package for designing optimal genetical genomics experiments. A web implementation for designGG is available at http://gbic.biol.rug.nl/designGG. All software, including source code and documentation, is freely available. CONCLUSION: DesignGG allows users to intelligently select and allocate individuals to experimental units and conditions such as drug treatment. The user can maximize the power and resolution of detecting genetic, environmental and interaction effects in a genome-wide or local mode by giving more weight to genome regions of special interest, such as previously detected phenotypic quantitative trait loci. This will help to achieve high power and more accurate estimates of the effects of interesting factors, and thus yield a more reliable biological interpretation of data. DesignGG is applicable to linkage analysis of experimental crosses, e.g. recombinant inbred lines, as well as to association analysis of natural populations

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66Ā years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, PĀ =Ā 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratioĀ =Ā 15.97, PĀ =Ā 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (PĀ &lt;Ā 0.001). The LPC mice had significantly longer wire and grid hanging time (PĀ &lt;Ā 0.02), longer time on rotor (PĀ =Ā 0.0001) and larger grip strength (PĀ &lt;Ā 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (PĀ &lt;Ā 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (PĀ =Ā 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (PĀ =Ā 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans

    Get PDF
    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has not yet been studied. Here we show that differential expression induced by temperatures of 16 Ā°C and 24 Ā°C has a strong genetic component in Caenorhabditis elegans recombinant inbred strains derived from a cross between strains CB4856 (Hawaii) and N2 (Bristol). No less than 59% of 308 trans-acting genes showed a significant eQTL-by-environment interaction, here termed plasticity quantitative trait loci. In contrast, only 8% of an estimated 188 cis-acting genes showed such interaction. This indicates that heritable differences in plastic responses of gene expression are largely regulated in trans. This regulation is spread over many different regulators. However, for one group of trans-genes we found prominent evidence for a common master regulator: a transband of 66 coregulated genes appeared at 24 Ā°C. Our results suggest widespread genetic variation of differential expression responses to environmental impacts and demonstrate the potential of genetical genomics for mapping the molecular determinants of phenotypic plasticity
    • ā€¦
    corecore