297 research outputs found

    The optimal connection model for blood vessels segmentation and the MEA-Net

    Full text link
    Vascular diseases have long been regarded as a significant health concern. Accurately detecting the location, shape, and afflicted regions of blood vessels from a diverse range of medical images has proven to be a major challenge. Obtaining blood vessels that retain their correct topological structures is currently a crucial research issue. Numerous efforts have sought to reinforce neural networks' learning of vascular geometric features, including measures to ensure the correct topological structure of the segmentation result's vessel centerline. Typically, these methods extract topological features from the network's segmentation result and then apply regular constraints to reinforce the accuracy of critical components and the overall topological structure. However, as blood vessels are three-dimensional structures, it is essential to achieve complete local vessel segmentation, which necessitates enhancing the segmentation of vessel boundaries. Furthermore, current methods are limited to handling 2D blood vessel fragmentation cases. Our proposed boundary attention module directly extracts boundary voxels from the network's segmentation result. Additionally, we have established an optimal connection model based on minimal surfaces to determine the connection order between blood vessels. Our method achieves state-of-the-art performance in 3D multi-class vascular segmentation tasks, as evidenced by the high values of Dice Similarity Coefficient (DSC) and Normalized Surface Dice (NSD) metrics. Furthermore, our approach improves the Betti error, LR error, and BR error indicators of vessel richness and structural integrity by more than 10% compared to other methods, and effectively addresses vessel fragmentation and yields blood vessels with a more precise topological structure.Comment: 19 page

    A novel hybrid firefly algorithm for global optimization

    Get PDF
    Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate

    An Efficient Source Model Selection Framework in Model Databases

    Full text link
    With the explosive increase of big data, training a Machine Learning (ML) model becomes a computation-intensive workload, which would take days or even weeks. Thus, reusing an already trained model has received attention, which is called transfer learning. Transfer learning avoids training a new model from scratch by transferring knowledge from a source task to a target task. Existing transfer learning methods mostly focus on how to improve the performance of the target task through a specific source model, and assume that the source model is given. Although many source models are available, it is difficult for data scientists to select the best source model for the target task manually. Hence, how to efficiently select a suitable source model in a model database for model reuse is an interesting but unsolved problem. In this paper, we propose SMS, an effective, efficient, and flexible source model selection framework. SMS is effective even when the source and target datasets have significantly different data labels, and is flexible to support source models with any type of structure, and is efficient to avoid any training process. For each source model, SMS first vectorizes the samples in the target dataset into soft labels by directly applying this model to the target dataset, then uses Gaussian distributions to fit for clusters of soft labels, and finally measures the distinguishing ability of the source model using Gaussian mixture-based metric. Moreover, we present an improved SMS (I-SMS), which decreases the output number of the source model. I-SMS can significantly reduce the selection time while retaining the selection performance of SMS. Extensive experiments on a range of practical model reuse workloads demonstrate the effectiveness and efficiency of SMS

    A physical study of the LLL algorithm

    Full text link
    This paper presents a study of the LLL algorithm from the perspective of statistical physics. Based on our experimental and theoretical results, we suggest that interpreting LLL as a sandpile model may help understand much of its mysterious behavior. In the language of physics, our work presents evidence that LLL and certain 1-d sandpile models with simpler toppling rules belong to the same universality class. This paper consists of three parts. First, we introduce sandpile models whose statistics imitate those of LLL with compelling accuracy, which leads to the idea that there must exist a meaningful connection between the two. Indeed, on those sandpile models, we are able to prove the analogues of some of the most desired statements for LLL, such as the existence of the gap between the theoretical and the experimental RHF bounds. Furthermore, we test the formulas from the finite-size scaling theory (FSS) against the LLL algorithm itself, and find that they are in excellent agreement. This in particular explains and refines the geometric series assumption (GSA), and allows one to extrapolate various quantities of interest to the dimension limit. In particular, we predict the empirical average RHF converges to ≈1.02265\approx 1.02265 as dimension goes to infinity.Comment: Augmented version of 1804.03285; expect some overlap

    Systematic Hydrogen‐Bond Manipulations To Establish Polysaccharide Structure–Property Correlations

    Get PDF
    A dense hydrogen‐bond network is responsible for the mechanical and structural properties of polysaccharides. Random derivatization alters the properties of the bulk material by disrupting the hydrogen bonds, but obstructs detailed structure–function correlations. We have prepared well‐defined unnatural oligosaccharides including methylated, deoxygenated, deoxyfluorinated, as well as carboxymethylated cellulose and chitin analogues with full control over the degree and pattern of substitution. Molecular dynamics simulations and crystallographic analysis show how distinct hydrogen‐bond modifications drastically affect the solubility, aggregation behavior, and crystallinity of carbohydrate materials. This systematic approach to establishing detailed structure–property correlations will guide the synthesis of novel, tailor‐made carbohydrate materials
    • 

    corecore