515 research outputs found
Measuring and modelling carbon stocks in rubber (Hevea brasiliensis) dominated landscapes in Subtropical China
Rubber plantation has been rapidly expanded in Montane Mainland South East Asia in past decades. Limited by long-term monitoring data availability, the impacts of environmental change on rubber trees carbon stock development still not fully understood. Against global warming background, in order to better facilitate regional forest management, we applied synergetic approach combining field survey and modelling tools to improve predictions of dynamic carbon stock changes. The trade-off analysis regarding to rubber carbon stock and latex production optimization was further discussed in view of sustainable rubber cultivation.
The first study explored the impact of regional land-use changes on landscape carbon balances. The Naban River Watershed National Nature Reserve (NRWNNR), Xishuangbanna, China, was selected as a case study location. Carbon stocks were evaluated using the Rapid Carbon Stock Appraisal (RaCSA) method based on tree, plot, land use and landscape level assessments of carbon stocks, integrating field sampling with remote sensing and GIS technology. The results showed that rubber plantations had larger time-averaged carbon stocks than non-forest land use types (agricultural crops, bush and grassland) but much lower than natural forest. During 23 years (1989-2012), the whole landscape of the nature reserve (26574 ha) gained 0.644 Tg C. Despite rubber expansion, the reforestation activities conducted in NRWNNR were able to enhance the carbon stocks.
Regional evaluation of the carbon sequestration potential of rubber trees depends largely on the selection of suitable allometric equations and the biomass-to-carbon conversion factor. The second study developed generic allometric equations for rubber trees, covering rotation lengths of 4-35 years, within elevation gradient of 621-1,127 m, and locally used rubber tree clones (GT1, PRIM600, Yunyan77-4) in mountainous South Western China. Allometric equations for aboveground biomass (AGB) estimations considering diameter at breast height (DBH), tree height, and wood density were superior to other equations. We also tested goodness of fit for the recently proposed pan-tropical forest model. The results displayed that prediction of AGB by the model calibrated with the harvested rubber tree biomass and wood density was more accurate than the results produced by the pan-tropical forest model adjusted to local conditions. The relationships between DBH and height and between DBH and biomass were influenced by tapping, therefore biomass and C stock calculations for rubber have to be done using species-specific allometric equations. Based on the analysis of environmental factors acting at the landscape level, we noticed that above- and belowground carbon stocks were mostly affected by stand age, soil clay content, aspect, and planting density. The results of this study provide reference for reliable carbon accounting in other rubber-cultivated regions.
In the last study, we explored how rubber trees growth and production response to climate change and regional management strategies (cultivation elevation, planting density). We applied the process-based Land Use Change Impact Assessment tool (LUCIA) calibrated with detailed ground survey data to model tree biomass development and latex yield in rubber plantations at the tree, plot and landscape level. Model simulation showed that during a 40-year rotation, lowland rubber plantations (< 900m) grew quicker and had larger latex yield than highland rubber (≧900m). High planting density rubber plantations showed 5% higher above ground biomass than those at low- and medium-planting density. The mean total biomass and cumulative latex yield per tree over 40 years increased by 28% and 48%, respectively, when climate change scenarios were modelled from baseline to highest CO2 emission scenario (RCP 8.5). The same trend of biomass and latex yield increase with climate change was observed at plot level. Denser plantations had larger biomass, but the cumulative latex production decreased dramatically. The spatially explicit output maps produced during modelling could help maximize carbon stock and latex production of regional rubber plantations.
Overall, rubber-based system required for appropriate monitoring scale in both temporal aspect (daily-, monthly-, and yearly-level) and in spatial aspect (pixel-, land use-, watershed-, and landscape- level). The findings from present study highlighted the important application of ecological modelling tools in nature resources management. The lessons learned here could be applicable for other rubber-cultivated regions, by updating with site-specific environmental variables. The significant role of rubber tree not limited in its nature latex production, it also lies in its great carbon sequestration potential. Our results here provided entry point for future developing comprehensive climate change adaption and mitigation strategies in South East Asia. By making use of interdisplinary cooperation, the sustainable rubber cultivation in Great Mekong Regions could be well realized.In den vergangenen Jahrzehnten wurde der Kautschukanbau in den Bergregionen des sĂŒdostasiatischen Festlandes rasch ausgebaut. Die Auswirkungen von UmweltverĂ€nderungen auf die Entwicklung des Kohlenstoffbestandes von KautschukbĂ€umen sind durch die eingeschrĂ€nkte VerfĂŒgbarkeit von Langzeit-Monitoring-Daten noch nicht vollstĂ€ndig geklĂ€rt. Vor dem Hintergrund der globalen ErwĂ€rmung und um die regionale Waldbewirtschaftung zu unterstĂŒtzen, haben wir einen synergetischen Ansatz angewandt, der Feldmessungen und Modellierungswerkzeuge kombiniert, um die Vorhersage dynamischer VerĂ€nderungen der KohlenstoffbestĂ€nde zu verbessern. Die Kosten-Nutzen AbwĂ€gung fĂŒr einen nachhaltigen Kautschukanbau bezĂŒglich der Kautschuk-KohlenstoffvorrĂ€te und der Optimierung der Latexproduktion wird im Weiteren diskutiert.
Die erste Studie untersuchte die Auswirkungen regionaler LandnutzungsĂ€nderungen auf die Kohlenstoffbilanz der Landschaft. Das Naban River Watershed National Nature Reserve (NRWNNNR), Xishuangbanna, China, wurde als Fallstudienstandort ausgewĂ€hlt. Die Bewertung der KohlenstoffvorrĂ€te erfolgte mit der Rapid Carbon Stock Appraisal (RaCSA)-Methode. Diese basiert auf der Bewertung von KohlenstoffvorrĂ€ten auf dem Niveau von BĂ€umen, GrundstĂŒcken, Landnutzung und Landschaft, mit Einbindung von Feldprobennahme verbunden mit Fernerkundung und GIS-Technologie. Die Ergebnisse zeigten, dass Kautschukplantagen einen gröĂeren zeitgemittelten Kohlenstoffvorrat hatten als nicht-forstliche Landnutzungsarten (Ackerland, Busch- und GrĂŒnland), aber viel weniger als natĂŒrliche WĂ€lder. WĂ€hrend 23 Jahren (1989-2012) gewann das gesamte Gebiet des Naturschutzgebietes (26574 ha) 0,644 Tg C hinzu. Trotz Ausdehnung der KautschukanbauflĂ€chen konnten die AufforstungsaktivitĂ€ten in NRWNNR die KohlenstoffvorrĂ€te erhöhen.
Die regionale Bewertung des Kohlenstoffsequestrierungspotenzials von KautschukbĂ€umen hĂ€ngt wesentlich von der Auswahl geeigneter allometrischer Gleichungen und des Biomasse-Kohlenstoff-Umwandlungsfaktors ab. Die zweite Studie entwickelte allgemeine allometrische Gleichungen fĂŒr KautschukbĂ€ume, basierend auf Daten aus Kautschukplantagen mit Umtriebszeiten von 4-35 Jahren, Höhenlagen von 621-1.127 m und lokal verwendeten Kautschukbaumklonen (GT1, PRIM600, Yunyan77-4) im bergigen SĂŒdwesten Chinas. Allometrische Gleichungen zur Berechnung der oberirdischen Biomasse (AGB), welche den Durchmesser in Brusthöhe (DBH), Baumhöhe und Holzdichte berĂŒcksichtigten, waren anderen Gleichungen ĂŒberlegen. Wir haben auch die AnpassungsgĂŒte des kĂŒrzlich vorgeschlagene pan-tropische Waldmodell getestet. Die Ergebnisse zeigten, dass die Vorhersage der AGB durch das mit der destruktiv bestimmten Biomasse und der Holzdichte kalibrierte Modell genauer war als die Ergebnisse des pan-tropischen Waldmodells, das an die lokalen Bedingungen angepasst wurde. Die Beziehungen zwischen DBH und Höhe, und DBH und Biomasse wurden durch die Anzapfung der BĂ€ume beeinflusst. Aufgrund dessen mĂŒssen Biomasse- und C-Bestandsberechnungen fĂŒr Kautschuk mit artspezifischen allometrischen Gleichungen durchgefĂŒhrt werden. Basierend auf der Analyse von Umweltfaktoren, die auf Landschaftsebene wirken, stellten wir fest, dass die ober- und unterirdischen KohlenstoffvorrĂ€te vor allem durch das Bestandsalter, den Tongehalt des Bodens, die Hanglage und die Pflanzdichte beeinflusst wurden. Die Ergebnisse dieser Studie liefern Anhaltspunkte fĂŒr eine zuverlĂ€ssige Kohlenstoffbilanzierung in anderen Kautschukanbaugebieten.
In der letzten Studie haben wir untersucht, wie KautschukbĂ€ume auf den Klimawandel und regionalen Managementstrategien (Anbauhöhe, Pflanzdichte) reagieren. Wir setzten das prozessbasierte Land Use Change Impact Assessment Tool (LUCIA) ein, das mit detaillierten Bodenuntersuchungsdaten kalibriert wurde, um die Entwicklung der Baumbiomasse und den Latexertrag in Kautschukplantagen auf Baum-, Parzelle- und Landschaftsebene zu modellieren. Die Modellsimulation zeigte, dass wĂ€hrend einer 40-jĂ€hrigen Rotationzeit die Flachland-Kautschukplantagen (< 900m) schneller wuchsen und eine höhere Latexausbeute hatten als die Hochland-Kautschukplantagen (≧900m). Kautschukplantagen mit hoher Pflanzdichte zeigten eine um 5% höhere oberirdische Biomasse als solche mit niedriger und mittlerer Pflanzdichte. Der durchschnittliche Gesamtertrag an Biomasse und der kumulative Latexertrag pro Baum stieg in 40 Jahren um 28% bzw. 48%, wenn die Klimaszenarien vom Basisszenario bis zum höchsten CO2-Emissionsszenario (RCP 8. 5) durchsimuliert wurden. Dieser Trend der Zunahme der Biomasse- und Latexausbeute mit verstĂ€rktem Klimawandel wurde auch auf der Ebene der Parzelle beobachtet. Dichtere Plantagen hatten eine gröĂere Biomasse, aber die kumulative Latexproduktion ging drastisch zurĂŒck. Die wĂ€hrend der Modellierung erstellten rĂ€umlich expliziten Output-Karten könnten helfen, die KohlenstoffvorrĂ€te und die Latexproduktion regionaler Kautschukplantagen zu maximieren.
Allgemein ist fĂŒr ein angemessenes Monitoring ein Kautschuk-basiertes System erforderlich, das sowohl in zeitlicher Hinsicht (Tages-, Monats- und Jahresebene) als auch in rĂ€umlicher Hinsicht (Pixel-, Landnutzungs-, Wassereinzugs- und Landschaftsebene) geeignet ist. Die Ergebnisse der vorliegenden Studie verdeutlichen die Bedeutung ökologischer Modellierungswerkzeuge im Naturressourcenmanagement. Die hier gemachten Erfahrungen könnten auch auf andere Kautschukanbaugebiete ĂŒbertragen werden, indem sie mit standortspezifischen Umweltvariablen aktualisiert werden. Die bedeutende Rolle des Kautschukbaums ist nicht nur auf dieHerstellung von Naturlatex beschrĂ€nkt, sondern liegt auch in seinem groĂen Potenzial zur Kohlenstoffbindung. Unsere Ergebnisse lieferen den Ausgangspunkt fĂŒr die kĂŒnftige Entwicklung umfassender Strategien zur Anpassung an den Klimawandel und zur EindĂ€mmung des Klimawandels in SĂŒdostasien. Durch interdisziplinĂ€re Zusammenarbeit könnte der nachhaltige Kautschukanbau in den GroĂen Mekong-Regionen realisiert werden
Agricultural carbon emission efficiency and agricultural practices: implications for balancing carbon emissions reduction and agricultural productivity increment
The current Ukraine War underlines the importance of grain self-sufficiency. After the adoption of the Paris Agreement, two major challenges developing countries are facing in the coming decades are increasing agricultural production to ensure food security and reducing carbon emissions (CE). The key to such an âenvironment-development dilemmaâ is to improve agricultural carbon emission efficiency (CEE). Using China as the study site, we systematically analyze the impacts of agricultural management activities on agricultural CEE from 1997 to 2019. Global and local Moran's I index tests provide evidence of a positive spatial dependence of agricultural CEE. Using the LISA cluster map, we observe that high CEE regions tend to be distributed together, dominated by environmental conditions. However, with the promotion of agricultural management activities, such a clustering pattern vanished. Our spatial Durbin model (SDM) estimation results indicate that there are significant nonlinear relationships between agricultural practices and agricultural CEE. While the consumption of fertilizers and pesticides has economies of scale effects, the deployment of agricultural machinery and irrigation have diseconomies of scale effects on local CEE. Based on the SDM results, the direct and indirect effect estimation results suggest that the significant direct and spillover effects of many practices on agricultural CEE have opposite nonlinear shapes, implying a more complicated situation in promoting these activities, as the positive regional effect of an agricultural activity might have a negative impact on adjacent regions. All the results indicate that local policymakers should carefully tailor agricultural development policies based on local environmental conditions
Almost Sure Asymptotical Adaptive Synchronization for Neutral-Type Neural Networks with Stochastic Perturbation and Markovian Switching
The problem of almost sure (a.s.) asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching is researched. Firstly, we proposed a new criterion of a.s. asymptotic stability for a general neutral-type stochastic differential equation which extends the existing results. Secondly, based upon this stability criterion, by making use of Lyapunov functional method and designing an adaptive controller, we obtained a condition of a.s. asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching. The synchronization condition is expressed as linear matrix inequality which can be easily solved by Matlab. Finally, we introduced a numerical example to illustrate the effectiveness of the method and result obtained in this paper
Testing Hateful Speeches against Policies
In the recent years, many software systems have adopted AI techniques,
especially deep learning techniques. Due to their black-box nature, AI-based
systems brought challenges to traceability, because AI system behaviors are
based on models and data, whereas the requirements or policies are rules in the
form of natural or programming language. To the best of our knowledge, there is
a limited amount of studies on how AI and deep neural network-based systems
behave against rule-based requirements/policies. This experience paper examines
deep neural network behaviors against rule-based requirements described in
natural language policies. In particular, we focus on a case study to check
AI-based content moderation software against content moderation policies.
First, using crowdsourcing, we collect natural language test cases which match
each moderation policy, we name this dataset HateModerate; second, using the
test cases in HateModerate, we test the failure rates of state-of-the-art hate
speech detection software, and we find that these models have high failure
rates for certain policies; finally, since manual labeling is costly, we
further proposed an automated approach to augument HateModerate by finetuning
OpenAI's large language models to automatically match new examples to policies.
The dataset and code of this work can be found on our anonymous website:
\url{https://sites.google.com/view/content-moderation-project}
Stochastic Synchronization of Neutral-Type Neural Networks with Multidelays Based on M
The problem of stochastic synchronization
of neutral-type neural networks with multidelays based on
M-matrix is researched. Firstly, we designed a control law of
stochastic synchronization of the neural-type and multiple time-delays
neural network. Secondly, by making use of Lyapunov
functional and M-matrix method, we obtained a criterion under
which the drive and response neutral-type multiple time-delays
neural networks with stochastic disturbance and Markovian
switching are stochastic synchronization. The synchronization
condition is expressed as linear matrix inequality which can
be easily solved by MATLAB. Finally, we introduced a numerical
example to illustrate the effectiveness of the method and result
obtained in this paper
Improved performance of the rechargeable hybrid aqueous battery at near full state-of-charge
The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.electacta.2018.03.152 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/For the first time, a green lignin/silica nanocomposite (LSC) is introduced to the rechargeable hybrid aqueous Zn/LiMn2O4 battery (ReHAB) as additive in the cathode formulation. Lignin acts as a key role to regulate and control the structure of LSC, intending to enhance the stability of the ReHAB by improving the float charge performance while maintaining other electrochemical performances of the battery. The lignin/silica nanocomposites (LSCs) are characterized by X-ray diffraction, scanning electron microscopy, surface area and porosimetry analyzer, and transmission electron microscopy. The results show that amorphous, uniform and mesoporous LSC-1 is prepared at the mass ratio of 1:2 of lignin to silica. LSC-1 used as the cathode additive improves the float charge performance of ReHAB via decreasing the float charge capacity by 57%. To compensate the loss of conductivity caused by LSC-1 and increase the capacity of the battery, graphene (G) is added. Compared to the reference battery, battery using the cathode containing 3 wt% combined additive of LSC-1 and G at mass ratio of 1:1, has 50% lower float charge capacity, higher rate performance and better cyclability. Up to a discharge capacity of 95 mAh gâ1 is still obtained after 300 cycles of 100% depth-of-discharge.National Natural Science Foundation of China [21436004]Natural Science Foundation of Guangdong Province [2017A030308012]Positec Canada Ltd.Chinese Scholarship Council (CSC
Almost Sure Asymptotical Adaptive Synchronization for Neutral-Type Neural Networks with Stochastic Perturbation and Markovian Switching
The problem of almost sure (a.s.) asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching is researched. Firstly, we proposed a new criterion of a.s. asymptotic stability for a general neutral-type stochastic differential equation which extends the existing results. Secondly, based upon this stability criterion, by making use of Lyapunov functional method and designing an adaptive controller, we obtained a condition of a.s. asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching. The synchronization condition is expressed as linear matrix inequality which can be easily solved by Matlab. Finally, we introduced a numerical example to illustrate the effectiveness of the method and result obtained in this paper
A Quick and Parallel Analytical Method Based on Quantum Dots Labeling for ToRCH-Related Antibodies
Quantum dot is a special kind of nanomaterial composed of periodic groups of IIâVI, IIIâV or IVâVI materials. Their high quantum yield, broad absorption with narrow photoluminescence spectra and high resistance to photobleaching, make them become a promising labeling substance in biological analysis. Here, we report a quick and parallel analytical method based on quantum dots for ToRCH-related antibodies including Toxoplasma gondii, Rubella virus, Cytomegalovirus and Herpes simplex virus type 1 (HSV1) and 2 (HSV2). Firstly, we fabricated the microarrays with the five kinds of ToRCH-related antigens and used CdTe quantum dots to label secondary antibody and then analyzed 100 specimens of randomly selected clinical sera from obstetric outpatients. The currently prevalent enzyme-linked immunosorbent assay (ELISA) kits were considered as âgolden standardâ for comparison. The results show that the quantum dots labeling-based ToRCH microarrays have comparable sensitivity and specificity with ELISA. Besides, the microarrays hold distinct advantages over ELISA test format in detection time, cost, operation and signal stability. Validated by the clinical assay, our quantum dots-based ToRCH microarrays have great potential in the detection of ToRCH-related pathogens
- âŠ