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The problem of stochastic synchronization of neutral-type neural networks with multidelays based on M-matrix is researched.
Firstly, we designed a control law of stochastic synchronization of the neural-type and multiple time-delays neural network.
Secondly, by making use of Lyapunov functional and M-matrix method, we obtained a criterion under which the drive and
response neutral-type multiple time-delays neural networks with stochastic disturbance and Markovian switching are stochastic
synchronization. The synchronization condition is expressed as linear matrix inequality which can be easily solved by MATLAB.
Finally, we introduced a numerical example to illustrate the effectiveness of the method and result obtained in this paper.

1. Introduction

In recent years, neutral-type systems have been intensively
studied due to the cause that many practical processes can
be modeled as general neutral-type descriptor systems, such
as computer aided design, circuit analysis, chemical process
simulation, power systems, real time simulation of mechani-
cal systems, population dynamics, and automatic control (see,
e.g., [1–6] and the references therein). For example, in [1],
the author studied the stability and asymptotic properties
of a class of neutral-type functional differential equations
based on the pattern equation method. In [2], the author
investigated the asymptotic stability properties of neutral-
type systems in Hilbert space.

On the one hand, time-delays as a source of instability
and oscillators always appear in various aspects of neural
networks. Recently, the stability of neural networks with
time-delays has received lots of attention, such as [7, 8], and
many methods, such as the linear matrix inequality (LMI)
approach and𝑀-matrix approach, have been adopted by the
scholars; see, for example, [9, 10].

On the other hand, systems with Markov jump param-
eters, driven by continuous-time Markov chain, have been

widely used tomodel many practical systems where theymay
experience abrupt changes in their structure and parameters.
For example, in paper [11], a general model of an array of
N linearly coupled delayed neural networks with Marko-
vian jumping hybrid coupling is researched. In paper [12],
the author researched the feedback control problem for a
class of linear systems with Markovian jump parameters.
The stabilization of stochastic delayed neural networks with
Markovian switching was discussed in paper [13–16].

Meanwhile, the stability and synchronization of neutral-
type systems which depend on the delays of state and state
derivative have attracted a lot of attention (see [17–22] and
the references therein) due to the fact that some physical
systems in the real world can be described by neutral-type
models. Besides the above these, according to [23, 24], 𝑀-
matrix approach can not only design feed controller and trace
all information of Markovian switching parameters but also
has lower complexity than that of LMIs technology.

Inspired by the above discussions, in this paper, we
are concerned with the analysis issue for the problem of
stochastic synchronization of neutral-type neural networks
with multidelays and Markovian switching. By using 𝑀-
matrix approach and the stochastic analysis method, some
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synchronization criteria are obtained to ensure the stochastic
synchronization for the neutral-type neural networks with
multidelays. A numerical example is provided to illustrate the
effectiveness of the results obtained in this paper. The main
contributions of this paper are twofold: (1) Stochastic syn-
chronization for a new class of neutral-type neural networks
with multidelays and Markovian switching is considered.
(2) The theory results which are obtained by 𝑀-method
approach are more practical than that of LMIs technology.

2. System and Problem Description and
Preliminaries

Consider 𝑛-dimensional multiple time-delays neutral-type
neural network with Markovian switching of the form

𝑑 [𝑥 (𝑡) −𝐷 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)] = [−𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝑊 (𝑟 (𝑡)) 𝜑 (𝑥 (𝑡))

+

𝑙

∑

𝑘=1
𝑊𝑑𝑘 (𝑟 (𝑡)) 𝜑 (𝑥 (𝑡 − 𝜏𝑘 (𝑡)))

+𝑊𝑑0 (𝑟 (𝑡)) ∫
𝑡

𝑡−𝜏0(𝑡)
𝜑 (𝑥 (𝑠)) 𝑑𝑠] 𝑑𝑡,

(1)

where 𝑥(𝑡) = [𝑥1(𝑡) ⋅ ⋅ ⋅ 𝑥𝑛(𝑡)]
𝑇
∈ R𝑛 is the state vector asso-

ciated with 𝑛 neurons. 𝜑(𝑥(𝑡)) = [𝜑1(𝑥1(𝑡)) ⋅ ⋅ ⋅ 𝜑𝑛(𝑥𝑛(𝑡))]
𝑇

denotes the neuron activation function; 𝜏 denotes the con-
stant time-delay. 𝜏𝑘(𝑡), 𝑘 = 0, 1, . . . , 𝑙, are time-varying delays
satisfying 0 < 𝜏𝑘(𝑡) < 𝜏 and ̇𝜏𝑘(𝑡) < 𝜏 < 1, 𝑘 = 0, 1, . . . , 𝑙.

{𝑟(𝑡), 𝑡 ≥ 0} is a right-continuous Markov chain on the
complete probability space (Ω,F, {F𝑡}𝑡≥0,P)with a filtration
{F𝑡}𝑡≥0 satisfying the usual conditions (i.e., it is increasing
and right continuous while F0 contains all P-null sets).
The Markov chain takes values in a finite state space S =

{1, 2, . . . , 𝑆} with generator Γ = (𝛾𝑖𝑗)𝑆×𝑆 given by

P {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖}

=

{

{

{

𝛾𝑖𝑗Δ + 𝑜 (Δ) if 𝑖 ̸= 𝑗

1 + 𝛾𝑖𝑖Δ + 𝑜 (Δ) if 𝑖 = 𝑗,

(2)

where Δ > 0. Here 𝛾𝑖𝑗 ≥ 0 is the transition rate from 𝑖 to 𝑗 if
𝑖 ̸= 𝑗 while 𝛾𝑖𝑖 = −∑

𝑆

𝑗=1,𝑗 ̸=𝑖 𝛾𝑖𝑗.
𝐴(𝑟(𝑡)) ∈ R𝑛×𝑛 (𝐴 𝑖, 𝑟(𝑡) = 𝑖, for short) is a positive

diagonal matrix with its diagonal elements 𝑎𝑗, 𝑗 = 1, 2, . . . , 𝑛.
𝑊(𝑟(𝑡)) ∈ R𝑛×𝑛 and 𝑊𝑑𝑘(𝑟(𝑡)) ∈ R𝑛×𝑛 (𝑘 = 0, 1, . . . , 𝑙) are
the connection weight matrix and the time-delay connection
weight matrix, respectively. 𝐷(𝑟(𝑡)) ∈ R𝑛×𝑛 is external input
matrix.

For system (1) (called the drive system), the response
system is of the following form:

𝑑 [𝑦 (𝑡) −𝐷 (𝑟 (𝑡)) 𝑦 (𝑡 − 𝜏)] = [−𝐴 (𝑟 (𝑡)) 𝑦 (𝑡)

+𝑊 (𝑟 (𝑡)) 𝜑 (𝑦 (𝑡))

+

𝑙

∑

𝑘=1
𝑊𝑑𝑘 (𝑟 (𝑡)) 𝜑 (𝑦 (𝑡 − 𝜏𝑘 (𝑡)))

+𝑊𝑑0 (𝑟 (𝑡)) ∫
𝑡

𝑡−𝜏0(𝑡)
𝜑 (𝑦 (𝑠)) 𝑑𝑠 +𝑈 (𝑟 (𝑡))] 𝑑𝑡

+ 𝑔 (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡) , 𝑒𝜏0
(𝑡) , 𝑒𝜏1

(𝑡) , . . . , 𝑒𝜏𝑙
(𝑡)) 𝑑𝜔 (𝑡) ,

(3)

where 𝑦(𝑡) = [𝑦1(𝑡) ⋅ ⋅ ⋅ 𝑦𝑛(𝑡)]
𝑇
∈ R𝑛 is the state vector of

the drive system, 𝑈(𝑟(𝑡)) ∈ R𝑛 is the control input vector,
𝑒(𝑡) = 𝑦(𝑡) − 𝑥(𝑡), 𝑒𝜏𝑘(𝑡) = 𝑦(𝑡 − 𝜏𝑘(𝑡)) − 𝑥(𝑡 − 𝜏𝑘(𝑡)), 𝑘 =

0, 1, . . . , 𝑙, and 𝑔 is the noise intensity function satisfying 𝑔 :

R × S × 𝑅
𝑛
× ⋅ ⋅ ⋅ ×R𝑛 → R𝑛×𝑚.

𝜔(𝑡) = [𝜔1(𝑡), 𝜔2(𝑡), . . . , 𝜔𝑚(𝑡)]
𝑇 is 𝑚-dimensional F𝑡-

adapted Brownian motion. It is assumed that {𝑟(𝑡)} and 𝜔(𝑡)

in system (3) are independent.
For drive system (1) and response system (3), we can

obtain the error system as follows:

𝑑 [𝑒 (𝑡) −𝐷 (𝑟 (𝑡)) 𝑒 (𝑡 − 𝜏)] = [−𝐴 (𝑟 (𝑡)) 𝑒 (𝑡)

+𝑊 (𝑟 (𝑡)) 𝜓 (𝑡) +

𝑙

∑

𝑘=1
𝑊𝑑𝑘 (𝑟 (𝑡)) 𝜓𝜏𝑘

(𝑡)

+𝑊𝑑0 (𝑟 (𝑡)) ∫
𝑡

𝑡−𝜏0(𝑡)
𝜓 (𝑠) 𝑑𝑠 +𝑈 (𝑟 (𝑡))] 𝑑𝑡

+ 𝑔 (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡) , 𝑒𝜏0
(𝑡) , 𝑒𝜏1

(𝑡) , . . . , 𝑒𝜏𝑙
(𝑡)) 𝑑𝜔 (𝑡) ,

(4)

where 𝜓(𝑡) = 𝜑(𝑦(𝑡)) − 𝜑(𝑥(𝑡)) and 𝜓𝜏𝑘(𝑡) = 𝜑(𝑦(𝑡 − 𝜏𝑘(𝑡))) −

𝜑(𝑥(𝑡 − 𝜏𝑘(𝑡))).
The initial data is given by {𝑒(𝜃) : −𝜏 ≤ 𝜃 ≤ 0} = 𝜉(𝜃) ∈

𝐿
2
F0
([−𝜏, 0];R𝑛]), 𝑟(0) = 𝑟0, 𝜉(0) = 0, where 𝜏 = max{𝜏, 𝜏}.
For error system (4), we impose the following assump-

tions.

Assumption 1. Each function 𝜑𝑗 : R → R is nondecreasing
and there exists a positive constantΦ such that

𝜑𝑗 (𝑢) − 𝜑𝑗 (V)


≤ Φ |𝑢 − V|

∀𝑢, V ∈ R, 𝑗 = 1, 2, . . . , 𝑛.
(5)

Assumption 2. ∀𝑖 ∈ S, there exist some positive constants 𝐺
and 𝐺𝑖, 𝑖 = 0, 1, . . . , 𝑙, such that

trace (𝑔𝑇 (⋅) 𝑔 (⋅)) ≤ 𝐺 |𝑒 (𝑡)|
2
+

𝑙

∑

𝑘=0
𝐺𝑘


𝑒𝜏𝑘

(𝑡)


2
, (6)

and 𝑔(𝑡, 𝑖, 0, . . . , 0) = 0.
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Assumption 3. For the external input matrix𝐷𝑖 (𝑖 ∈ S), there
exists positive constant 𝜅𝑖 ∈ (0, 1), such that

𝜌 (𝐷𝑖) = 𝜅𝑖 ≤ 𝜅 ∈ (0, 1) , (7)

where 𝜅 = max𝑖∈S𝜅𝑖 and 𝜌(𝐷𝑖) is the spectral radius of matrix
𝐷𝑖.

We now begin with the following concept of stochastic
synchronization.

Definition 4. Neutral-type response neural networks (3) are
said to be stochastic synchronized with drive neural network
(1) if, for any 𝜉(𝑡) ∈ 𝐿

2
F0
([−𝜏, 0];R𝑛]) and 𝑟0 ∈ S,

∫

∞

0
E
𝑥 (𝑡; 𝑖0, 𝜉 (𝑡))



2
< ∞, (8)

where 𝑥(𝑡; 𝑖0, 𝜉(𝑡)) is the solution of system (4) for the initial
condition 𝜉(𝑡).

Now, we describe the problem to solve in this paper as
follows.

Target Description. For neutral-type andmultiple time-delays
neural networks (1) and (3) with stochastic disturbance
and Markovian switching, by using Lyapunov functional,
general Itô’s formula, and 𝑀-matrix method, this paper will
design a control law and obtain some criteria of stochastic
synchronization.

The following lemmas are useful for obtaining the main
result.

Lemma 5 (see [25]). Let 𝑥, 𝑦 ∈ R𝑛; then the inequality 𝑥𝑇𝑦 +

𝑦
𝑇
𝑥 ≤ 𝜖𝑥

𝑇
𝑥 + 𝜖
−1
𝑦
𝑇
𝑦 holds for any 𝜖 > 0.

Lemma 6 (see [26]). For any positive definite matrix 𝑀 ∈

R𝑛×𝑛, a scalar 𝛾 > 0, vector function 𝜔 : [0, 𝛾] → R𝑛 such
that the integration concerned is well defined; then

(∫

𝛾

0
𝜔 (𝑠) 𝑑𝑠)

𝑇

𝑀(∫

𝛾

0
𝜔 (𝑠) 𝑑𝑠)

≤ 𝛾∫

𝛾

0
𝜔
𝑇
(𝑠)𝑀𝜔 (𝑠) 𝑑𝑠.

(9)

Lemma 7 (see [27]). If 𝑀 = (𝑚𝑖𝑗)𝑛×𝑛 ∈ R𝑛×𝑛 with 𝑚𝑖𝑗 <

0 (𝑖 ̸= 𝑗), then the following statements are equivalent:
(i) 𝑀 is a nonsingular𝑀-matrix.
(ii) Every real eigenvalue of𝑀 is positive.
(iii) 𝑀 is positive stable. That is, 𝑀−1 exists and 𝑀

−1
>

0 (i.e., 𝑀−1 ≥ 0 and at least one element of 𝑀−1 is
positive).

3. Main Results

We are now in a position to derive a condition under
which neutral-type multiple time-delay neural networks (3)
with stochastic disturbance and Markovian switching are
stochastic synchronized with drive system (1). We have the
following result.

Theorem 8. Let Assumptions 1, 2, and 3 hold. Assume that
𝑀 := − diag{𝜂, 𝜂, . . . , 𝜂⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆

} − Γ is a nonsingular𝑀-matrix, where

𝜂 = − 2𝜍 + 𝛽
2
+𝛽

2
𝑑
+

𝑙

∑

𝑘=1
𝛽
2
𝑑𝑘
, (10)

with 𝜍 being a nonnegative real number, and 𝛽 = max𝑖∈S𝜌(𝑊𝑖),
𝛽𝑑 = max𝑖∈S𝜌(𝑊𝑑𝑖), and 𝛽𝑑𝑘 = max𝑖∈S𝜌(𝑊𝑑𝑘𝑖).

Let 𝑚 > 0, �⃗� = [𝑚,𝑚, . . . , 𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆

]
𝑇 and [𝑞1, 𝑞2, . . . , 𝑞𝑆]

𝑇
:=

𝑀
−1
�⃗�.
Assume also that

𝑎 = 2𝛼𝑞 −𝛼
2
𝑞 −Φ

2
𝑞 −𝐺0𝑞 −𝑄𝜏 −

𝑙

∑

𝑘=0
𝑄𝑘 − 𝜏

2
Φ

2

> 0,

(11)

where 𝛼 = min𝑖∈Smin1≤𝑗≤𝑛𝑎
𝑖

𝑗
, 𝛼 = max𝑖∈Smax1≤𝑗≤𝑛𝑎

𝑖

𝑗
, 𝑞 =

min𝑖∈S𝑞𝑖, 𝑄𝜏 = 𝑞𝜅
2, and 𝑄𝑘 = 𝑞(Φ

2
+ 𝐺𝑘)/(1 − 𝜏).

We choose the feedback control 𝑈𝑖 with the update law as

𝑈𝑖 = (diag {𝑘1, 𝑘2, . . . , 𝑘𝑛} − 𝜍𝐼) (𝑒 (𝑡) −𝐷𝑖𝑒𝜏 (𝑡)) (12)

with

�̇�𝑗 = −𝛼𝑗𝑞 (𝑒𝑗 −𝐷𝑖 (𝑒𝜏)𝑗
)
2
, (13)

where 𝛼𝑗 > 0 (𝑗 = 1, 2, . . . , 𝑛) are arbitrary constants.
Then neutral-typemultiple time-delays neural networks (3)

with stochastic disturbance and Markovian switching can be
stochastic synchronized with drive system (1).

Proof. Fix any (𝑖0, 𝜉(𝑡)) ∈ S × R𝑛 write 𝑒(𝑡; 𝑖0, 𝜉(𝑡)) = 𝑒(𝑡)

for simplicity. For neutral-type multiple time-delays neural
networks (4), consider the following Lyapunov functional
𝑉 ∈ C2,1

(R+ × S ×R𝑛;R+):

𝑉 (𝑡, 𝑖, 𝑒 (𝑡)) = 𝑞 |𝑒 (𝑡)|
2
+

𝑛

∑

𝑗=1

1
𝛼𝑗

𝑘
2
𝑗

+

𝑙

∑

𝑘=0
∫

𝑡

𝑡−𝜏𝑘(𝑡)

𝑒
𝑇
(𝑠) 𝑄𝑘𝑒 (𝑠) 𝑑𝑠

+∫

𝑡

𝑡−𝜏

𝑒
𝑇
(𝑠) 𝑄𝜏𝑒 (𝑠) 𝑑𝑠

+ 𝜏∫

0

−𝜏0(𝑡)
∫

𝑡

𝑡+𝛼

𝜓
𝑇
(𝑠) 𝜓 (𝑠) 𝑑𝑠 𝑑𝛼.

(14)

ComputingL𝑉 along neural networks (4), we can obtain

L𝑉 (𝑡, 𝑖, 𝑒 (𝑡))

= 𝑉𝑡 (𝑡, 𝑖, 𝑒 −𝐷𝑖𝑒𝜏) +𝑉𝑒 (𝑡, 𝑖, 𝑒 −𝐷𝑖𝑒𝜏) 𝑓 (𝑡, 𝑖, 𝑒, 𝑒𝜏)

+
1
2
trace [𝑔𝑇 (⋅) 𝑉𝑒𝑒 (𝑡, 𝑖, 𝑒 −𝐷𝑖𝑒𝜏) 𝑔 (⋅)]

+

𝑆

∑

𝑘=1
𝛾𝑖𝑘𝑉 (𝑡, 𝑘, 𝑒 −𝐷𝑖𝑒𝜏) ,

(15)
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where 𝑓(𝑡, 𝑖, 𝑒, 𝑒𝜏) = −𝐴(𝑟(𝑡))𝑒(𝑡) + 𝑊(𝑟(𝑡))𝜓(𝑡) +
∑
𝑙

𝑘=1 𝑊𝑑𝑘(𝑟(𝑡))𝜓𝜏𝑘(𝑡) + 𝑊𝑑0(𝑟(𝑡)) ∫
𝑡

𝑡−𝜏0(𝑡)
𝜓(𝑠)𝑑𝑠 + 𝑈(𝑟(𝑡)).

Now,

𝑉𝑒 (𝑡, 𝑖, 𝑒 −𝐷𝑖𝑒𝜏) = 2𝑞 (𝑒 −𝐷𝑖𝑒𝜏)
𝑇
,

𝑉𝑒𝑒 (𝑡, 𝑖, 𝑒 −𝐷𝑖𝑒𝜏) = 2𝑞,
(16)

𝑉𝑡 (𝑡, 𝑖, 𝑒 −𝐷𝑖𝑒𝜏)

=

𝑛

∑

𝑗=1

2
𝛼𝑗

𝑘𝑗�̇�𝑗 +

𝑙

∑

𝑘=1
𝑒
𝑇
(𝑡) 𝑄𝑘𝑒 (𝑡)

−

𝑙

∑

𝑘=1
(1− ̇𝜏𝑘 (𝑡)) 𝑒

𝑇
(𝑡 − 𝜏𝑘 (𝑡)) 𝑄𝑘𝑒 (𝑡 − 𝜏𝑘 (𝑡))

+ 𝑒
𝑇
(𝑡) 𝑄𝜏𝑒 (𝑡) − 𝑒

𝑇
(𝑡 − 𝜏)𝑄𝜏𝑒 (𝑡 − 𝜏)

+ 𝜏𝜏0 (𝑡) 𝜓
𝑇
(𝑡) 𝜓 (𝑡) − 𝜏∫

𝑡

𝑡−𝜏0(𝑡)
𝜓
𝑇
(𝑠) 𝜓 (𝑠) 𝑑𝑠

− 2𝑞
𝑛

∑

𝑗=1
𝑘𝑗 (𝑥𝑗 −𝐷𝑖 (𝑥𝜏)𝑗

)
2
+

𝑙

∑

𝑘=1
𝑒
𝑇
(𝑡) 𝑄𝑘𝑒 (𝑡)

−

𝑙

∑

𝑘=1
(1− 𝜏) 𝑒

𝑇
(𝑡 − 𝜏𝑘 (𝑡)) 𝑄𝑘𝑒 (𝑡 − 𝜏𝑘 (𝑡))

+ 𝑒
𝑇
(𝑡) 𝑄𝜏𝑒 (𝑡) − 𝑒

𝑇
(𝑡 − 𝜏)𝑄𝜏𝑒 (𝑡 − 𝜏)

+ 𝜏
2
Φ

2
𝑒
𝑇
(𝑡) 𝑒 (𝑡) − 𝜏∫

𝑡

𝑡−𝜏0(𝑡)
𝜓
𝑇
(𝑠) 𝜓 (𝑠) 𝑑𝑠.

(17)

From Lemma 5, we get

− 2𝑞 (𝑒 −𝐷𝑖𝑒𝜏)
𝑇
𝐴 𝑖𝑒 ≤ − 2min 𝜌 (𝐴 𝑖) 𝑞 (𝑒

𝑇
𝑒)

+ 2𝑞𝑒𝑇
𝜏
𝐷
𝑇

𝑖
𝐴 𝑖𝑒

≤ − 2𝛼𝑞 |𝑒|2

+ 𝑞 (𝑒
𝑇
𝐴
𝑇

𝑖
𝐴 𝑖𝑒 + 𝑒

𝑇

𝜏
𝐷
𝑇

𝑖
𝐷𝑖𝑒𝜏)

≤ − 2𝛼𝑞 |𝑒|2 + 𝑞𝛼
2
|𝑒|

2
+ 𝑞𝜅

2 𝑒𝜏


2

= 𝑞 (−2𝛼+𝛼
2
) |𝑒|

2
+ 𝑞𝜅

2 𝑒𝜏


2
.

(18)

From Assumption 1 and Lemma 5, it can be computed that

2𝑞 (𝑒 −𝐷𝑖𝑒𝜏)
𝑇
𝑊𝑖𝜓 (𝑡)

≤ 𝑞 ((𝑒 −𝐷𝑖𝑒𝜏)
𝑇
𝑊𝑖𝑊
𝑇

𝑖
(𝑒 −𝐷𝑖𝑒𝜏) +𝜓

𝑇
(𝑡) 𝜓 (𝑡))

≤ 𝑞 (max
𝑖∈S

𝜌 (𝑊𝑖))

2
𝑒 −𝐷𝑖𝑒𝜏



2
+ 𝑞Φ

2
|𝑒|

2

= 𝑞Φ
2
|𝑒|

2
+ 𝑞𝛽

2 𝑒 −𝐷𝑖𝑒𝜏


2
.

(19)

Similarly,

2𝑞 (𝑒 −𝐷𝑖𝑒𝜏)
𝑇
𝑙

∑

𝑘=1
𝑊𝑑𝑘𝑖𝜓 (𝑡 − 𝜏𝑘 (𝑡)) = 𝑞

𝑙

∑

𝑘=1
2 (𝑒

−𝐷𝑖𝑒𝜏)
𝑇
𝑊𝑑𝑘𝑖𝜓 (𝑡 − 𝜏𝑘 (𝑡))

≤ 𝑞

𝑙

∑

𝑘=1
((𝑒 −𝐷𝑖𝑒𝜏)

𝑇
𝑊𝑑𝑘𝑖𝑊

𝑇

𝑑𝑘𝑖
(𝑒 −𝐷𝑖𝑒𝜏)

+𝜓
𝑇
(𝑡 − 𝜏𝑘 (𝑡)) 𝜓 (𝑡 − 𝜏𝑘 (𝑡)))

≤ 𝑞

𝑙

∑

𝑘=1
(Φ

2 𝑒 (𝑡 − 𝜏𝑘 (𝑡))


2
+𝛽

2
𝑑𝑘

𝑒 −𝐷𝑖𝑒𝜏


2
) .

(20)

From Lemmas 5 and 6, we have

2𝑞 (𝑒 −𝐷𝑖𝑒𝜏)
𝑇
𝑊𝑑𝑖 ∫

𝑡

𝑡−𝜏0(𝑡)
𝜓 (𝑠) 𝑑𝑠

≤ 𝑞(𝑊𝑑𝑖𝑊
𝑇

𝑑𝑖

𝑒 −𝐷𝑖𝑒𝜏


2

+(∫

𝑡

𝑡−𝜏0(𝑡)
𝜓 (𝑠) 𝑑𝑠)

𝑇

∫

𝑡

𝑡−𝜏0(𝑡)
𝜓 (𝑠) 𝑑𝑠)

≤ 𝑞(𝛽
2
𝑑

𝑒 −𝐷𝑖𝑒𝜏


2
+ 𝜏∫

𝑡

𝑡−𝜏0(𝑡)
𝜓
𝑇
(𝑠) 𝜓 (𝑠) 𝑑𝑠) .

(21)

From control law (12), one can obtain

2𝑞 (𝑒 −𝐷𝑖𝑒𝜏)
𝑇
𝑈𝑖 = 2𝑞 (𝑒 −𝐷𝑖𝑒𝜏)

𝑇

⋅ diag {𝑘1 − 𝜍, 𝑘2 − 𝜍, . . . , 𝑘𝑛 − 𝜍} (𝑒 −𝐷𝑖𝑒𝜏)

= 2𝑞
𝑛

∑

𝑗=1
𝑘𝑗 (𝑥𝑗 −𝐷𝑖 (𝑥𝜏)𝑗

)
2
− 2𝑞𝜍 𝑒 −𝐷𝑖𝑒𝜏



2
.

(22)

From Assumption 2, we have

(
1
2
) trace (𝑔𝑇𝑔) = 𝑞 trace (𝑔𝑇𝑔)

≤ 𝑞(𝐺 |𝑒|
2
+

𝑙

∑

𝑘=0
𝐺𝑘

𝑒 (𝑡 − 𝜏𝑘 (𝑡))


2
) .

(23)

Finally,

S

∑

𝑘=1
𝛾𝑖𝑘𝑉 (𝑡, 𝑘, 𝑒 −𝐷𝑖𝑒𝜏) =

S

∑

𝑘=1
𝛾𝑖𝑘𝑞𝑘

𝑒 −𝐷𝑖𝑒𝜏


2
. (24)
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Substituting (17)–(24) into (15), we obtain that

L𝑉 ≤ −𝑎 |𝑒|
2
−𝑚

𝑒 −𝐷𝑖𝑒𝜏


2
< − 𝑎 |𝑒|

2
, (25)

where𝑚 = −[𝜂𝑞 + ∑
𝑆

𝑘=1 𝛾𝑖𝑘𝑞𝑘] by (𝑞1, 𝑞2, . . . , 𝑞𝑆)
𝑇
= 𝑀
−1
�⃗�.

Integrating and taking the mathematical expectation on
both sides of (25), one can get that

∫

∞

0
E
𝑥 (𝑡; 𝑖0, 𝜉 (𝑡))



2
< (

1
𝑎
)E𝑉 (0, 𝑟 (0) , 𝑒 (0))

< ∞.

(26)

Therefore, it can be concluded from Definition 4 that
response system (3) synchronizes stochastically drive system
(1). This completes the proof.

Remark 9. In Theorem 8, we have assumed that 𝑀 :=

− diag{𝜂, 𝜂, . . . , 𝜂⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆

} − Γ is a nonsingular 𝑀-matrix. For given

Markovian rate generator Γ, networks parameters 𝑊𝑖 and
𝑊𝑑𝑘𝑖, 𝑘 = 0, 1, . . . , 𝑙, according to 𝑀-matrix properties
(see Lemma 7), we can obtain parameter 𝜍. Thus, we can
design feedback control update law (12). This technique is
different from those, such as linear matrix inequality method
[28]. From the process of proving Theorem 8, if 𝑀-matrix
approach is not used, and LMIs technology is only adopted to
solve stochastic synchronization of addressed system (1), (25)
cannot be produced. In order to make ∫∞0 E|𝑥(𝑡; 𝑖0, 𝜉(𝑡))|

2
<

(1/𝑎) < ∞, the theory result inTheorem 8 will become more
complex.

Remark 10. From the analysis of Remark 9, we can also obtain
that if feedback control update law (12) has been designed,
because𝑀 := − diag{𝜂, 𝜂, . . . , 𝜂⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆

}−Γ, using𝑀-matrixmethod,

Markovian rate generator Γ can be checked. This also reflects
that all information of Markovian switching parameters is
traced.

When themultidelays turn to single delay and the neutral
term disappears in the neural networks, respectively, we have
the following two special cases of system (4).

Special Case 1 (single delay). Consider

𝑑 [𝑒 (𝑡) −𝐷 (𝑟 (𝑡)) 𝑒 (𝑡 − 𝜏)] = [−𝐴 (𝑟 (𝑡)) 𝑒 (𝑡)

+𝑊 (𝑟 (𝑡)) 𝜓 (𝑡) +𝑊𝑑1 (𝑟 (𝑡)) 𝜓𝜏1 (𝑡)

+𝑊𝑑0 (𝑟 (𝑡)) ∫
𝑡

𝑡−𝜏0(𝑡)
𝜓 (𝑠) 𝑑𝑠 +𝑈 (𝑟 (𝑡))] 𝑑𝑡

+ 𝑔 (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡) , 𝑒𝜏0
(𝑡) , 𝑒𝜏1

(𝑡) , . . . , 𝑒𝜏𝑙
(𝑡)) 𝑑𝜔 (𝑡) .

(27)

Special Case 2 (without neutral term). Consider

𝑑𝑒 (𝑡) = [−𝐴 (𝑟 (𝑡)) 𝑒 (𝑡) +𝑊 (𝑟 (𝑡)) 𝜓 (𝑡)

+

𝑙

∑

𝑘=1
𝑊𝑑𝑘 (𝑟 (𝑡)) 𝜓𝜏𝑘

(𝑡) +𝑊𝑑0 (𝑟 (𝑡)) ∫
𝑡

𝑡−𝜏0(𝑡)
𝜓 (𝑠) 𝑑𝑠

+𝑈 (𝑟 (𝑡))] 𝑑𝑡

+ 𝑔 (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡) , 𝑒𝜏0
(𝑡) , 𝑒𝜏1

(𝑡) , . . . , 𝑒𝜏𝑙
(𝑡)) 𝑑𝜔 (𝑡) .

(28)

Accordingly we can derive the two corollaries of Theo-
rem 8 below.

Corollary 11. Let Assumptions 1, 2, and 3 hold. Assume that
𝑀 := − diag{𝜂, 𝜂, . . . , 𝜂⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆

} − Γ is a nonsingular𝑀-matrix, where

𝜂 = − 2𝜍 + 𝛽
2
+𝛽

2
𝑑
+𝛽

2
𝑑1, (29)

with 𝜍 being a nonnegative real number, and 𝛽 = max𝑖∈S𝜌(𝑊𝑖),
𝛽𝑑 = max𝑖∈S𝜌(𝑊𝑑𝑖), and 𝛽𝑑1 = max𝑖∈S𝜌(𝑊𝑑1𝑖).

Let 𝑚 > 0, �⃗� = [𝑚,𝑚, . . . , 𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆

]
𝑇 and [𝑞1, 𝑞2, . . . , 𝑞𝑆]

𝑇
:=

𝑀
−1
�⃗�.
Assume also that

𝑎 = 2𝛼𝑞−𝛼
2
𝑞 −Φ

2
𝑞 −𝐺0𝑞 −𝑄𝜏 −

1
∑

𝑘=0
𝑄𝑘 − 𝜏

2
Φ

2

> 0,

(30)

where 𝛼 = min𝑖∈Smin1≤𝑗≤𝑛𝑎
𝑖

𝑗
, 𝛼 = max𝑖∈Smax1≤𝑗≤𝑛𝑎

𝑖

𝑗
, 𝑞 =

min𝑖∈S𝑞𝑖, 𝑄𝜏 = 𝑞𝜅
2, and 𝑄𝑘 = 𝑞(Φ

2
+ 𝐺𝑘)/(1 − 𝜏).

We choose the feedback control 𝑈𝑖 with the update law as

𝑈𝑖 = (diag {𝑘1, 𝑘2, . . . , 𝑘𝑛} − 𝜍𝐼) (𝑒 (𝑡) −𝐷𝑖𝑒𝜏 (𝑡)) (31)

with

�̇�𝑗 = −𝛼𝑗𝑞 (𝑒𝑗 −𝐷𝑖 (𝑒𝜏)𝑗
)
2
, (32)

where 𝛼𝑗 > 0 (𝑗 = 1, 2, . . . , 𝑛) are arbitrary constants.
Then the response system can synchronize with the drive

system of neutral-type.

Corollary 12. Let Assumptions 1, 2, and 3 hold. Assume that
𝑀 := − diag{𝜂, 𝜂, . . . , 𝜂⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆

} − Γ is a nonsingular𝑀-matrix, where

𝜂 = − 2𝜍 + 𝛽
2
+𝛽

2
𝑑
+

𝑙

∑

𝑘=1
𝛽
2
𝑑𝑘
, (33)
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with 𝜍 being a nonnegative real number, and 𝛽 = max𝑖∈S𝜌(𝑊𝑖),
𝛽𝑑 = max𝑖∈S𝜌(𝑊𝑑𝑖), and 𝛽𝑑𝑘 = max𝑖∈S𝜌(𝑊𝑑𝑘𝑖).

Let 𝑚 > 0, �⃗� = [𝑚,𝑚, . . . , 𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆

]
𝑇 and [𝑞1, 𝑞2, . . . , 𝑞𝑆]

𝑇
:=

𝑀
−1
�⃗�.
Assume also that

𝑎 = 2𝛼𝑞−𝛼
2
𝑞 −Φ

2
𝑞 −𝐺0𝑞 −

𝑙

∑

𝑘=0
𝑄𝑘 − 𝜏

2
Φ

2
> 0, (34)

where 𝛼 = min𝑖∈Smin1≤𝑗≤𝑛𝑎
𝑖

𝑗
, 𝛼 = max𝑖∈Smax1≤𝑗≤𝑛𝑎

𝑖

𝑗
, 𝑞 =

min𝑖∈S𝑞𝑖, and 𝑄𝑘 = 𝑞(Φ
2
+ 𝐺𝑘)/(1 − 𝜏).

We choose the feedback control 𝑈𝑖 with the update law as

𝑈𝑖 = (diag {𝑘1, 𝑘2, . . . , 𝑘𝑛} − 𝜍𝐼) 𝑒 (𝑡) (35)

with

�̇�𝑗 = −𝛼𝑗𝑞𝑒
2
𝑗
, (36)

where 𝛼𝑗 > 0 (𝑗 = 1, 2, . . . , 𝑛) are arbitrary constants.
Then the response system can synchronize with the drive

system of multiple time-delays.

4. Numerical Simulation

One example is presented here in order to show the use-
fulness of our results. Our aim is to examine the stochastic
synchronization for the given neutral-type multiple time-
delays neural networks with stochastic noise and Markovian
switching.

Consider the error system of two-neuron delayed neural
network (4) with 2-state Markovian switching and one-
dimensional noise 𝐵(𝑡). We set the constant time-delay 𝜏 = 1
and 𝜏0(𝑡) = 1, 𝜏1(𝑡) = 0.8 sin(𝑡), 𝜏2(𝑡) = 0.8 cos(𝑡), which
means 𝜏 = 1 and 𝜏 = 0.8.

The transition ratematrix ofMarkovian switching is given
by

Γ = [

−4 4
3 −3

] ,

𝜑 (⋅) =
tanh (⋅)

4
,

𝑔 (⋅) =
𝑒 (𝑡)

2
.

(37)

Then we choose Φ = 0.25, 𝐺 = 0.25, and 𝐺𝑘 = 0 so that
Assumptions 1 and 2 can be satisfied.

The other parameters are given as follows:

𝐷1 = [

0.2 0
0 0.1

] ,

𝐴1 = [

0.9 0
0 1

] ,

𝑊1 = [

0.02 −0.03
0.05 0.04

] ,

𝑊𝑑01 = [

0.04 0.03
−0.03 0.02

] ,

𝑊𝑑11 = [

0.05 −0.02
0.03 −0.05

] ,

𝑊𝑑21 = [

0.04 −0.02
0.01 0.02

] ,

𝐷2 = [

0.1 0
0 0.05

] ,

𝐴2 = [

1 0
0 0.9

] ,

𝑊2 = [

−0.02 0.01
0.02 −0.05

] ,

𝑊𝑑02 = [

0.03 −0.01
0.02 −0.04

] ,

𝑊𝑑12 = [

0.03 −0.06
0.02 −0.01

] ,

𝑊𝑑22 = [

0.03 0.01
−0.04 0.02

] .

(38)

Given 𝜍 = 0.5,𝑚 = 1, we compute

𝜂 = − 0.9923,

𝑀 = [

1.4923 −0.5
−0.8 1.7923

] .

(39)

It can be easily verified that 𝑀 is 𝑀-matrix. We then
derived 𝑞 = 1.0078 and 𝛼 = 0.0509 > 0. Hence it follows
from Theorem 8 that drive system (1) and response system
(3) are stochastic synchronization. Figures 1–4 show the 2-
state Markov chain, the state trajectory of the drive system
and response system, the state trajectory and evolution of
the error system, and the update law of the control gain
matrix, respectively.We can see from Figure 3 that the system
state tends to zero with the increase of 𝑡, which verifies the
synchronization of the drive system and response system.
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Figure 1: 2-state Markov chain.
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Figure 2: State trajectory of two systems.

Remark 13. For Markovian switching with known transition
rate, we can choose reasonable parameter 𝜂 to realize 𝑀 :=

− diag{𝜂, 𝜂, . . . , 𝜂⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆

} − Γ to become 𝑀-matrix. In simulation

results, choosing 𝜍 = 0.5, it is easily observed that 𝑀 is 𝑀-
matrix. Furthermore, we can get 𝑞 and 𝛼. From the above
result, we can see that the analysis of 𝑀-matrix approach in
Remarks 9 and 10 is reasonable.

5. Conclusion

In this paper, we have dealt with the problem of stochas-
tic synchronization of neutral-type neural networks with
multidelays and Markovian switching. By using 𝑀-matrix

0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

t (s)

e(
t)

The error state 

e1
e2

Figure 3: State trajectory of the error system.
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t (s)

−5
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−3

−2

−1

0

1

2

k
(t
)

Update law

k1
k2

Figure 4: Update law.

approach and the stochastic analysis method, some syn-
chronization criteria are obtained to ensure the stochastic
synchronization for the neutral-type neural networks with
multidelays. A numerical example is provided to illustrate the
effectiveness of the result obtained in this paper.
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