404 research outputs found

    Adversarial Learning for Chinese NER from Crowd Annotations

    Full text link
    To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.Comment: 8 pages, AAAI-201

    MicroRNA Regulation and Tissue-Specific Protein Interaction Network

    Get PDF
    BACKGROUND: 'Fine-tuning' of protein abundance makes microRNAs (miRNAs) pervasively implicated in human biology. Although targeting many mRNAs endows the power of single miRNA to regulate complex biological processes, its functional roles in a particular tissue will be inevitably restricted because only a subset of its target genes is expressed. METHODS: Here, we analyze the characteristics of miRNA regulation upon target genes according to tissue-specific gene expression by constructing tissue-specific protein interaction networks for ten main types of tissues in the human body. RESULTS: Commonly expressed proteins are under more intensive but lower-cost miRNAs control than proteins with the tissue-specific expression. MiRNAs that target more commonly expressed genes usually regulate more tissue-specific genes. This is consistent with the previous finding that tissue-specific proteins tend to be functionally connected with commonly expressed proteins. But to a particular miRNA such a balance is not invariable among different tissues implying diverse tissue regulation modes executed by miRNAs. CONCLUSION: These results suggest miRNAs that interact with more commonly expressed genes can be expected to play important tissue-specific roles

    Crew Scheduling Considering both Crew Duty Time Difference and Cost on Urban Rail System

    Get PDF
    Urban rail crew scheduling problem is to allocate train services to crews based on a given train timetable while satisfying all the operational and contractual requirements. In this paper, we present a new mathematical programming model with the aim of minimizing both the related costs of crew duty and the variance of duty time spreads. In addition to iincorporating the commonly encountered crew scheduling constraints, it also takes into consideration the constraint of arranging crews having a meal in the specific meal period of one day rather than after a minimum continual service time. The proposed model is solved by an ant colony algorithm which is built based on the construction of ant travel network and the design of ant travel path choosing strategy. The performances of the model and the algorithm are evaluated by conducting case study on Changsha urban rail. The results indicate that the proposed method can obtain a satisfactory crew schedule for urban rails with a relatively small computational time

    Optimizing the Long-Term Operating Plan of Railway Marshalling Station for Capacity Utilization Analysis

    Get PDF
    Not only is the operating plan the basis of organizing marshalling station’s operation, but it is also used to analyze in detail the capacity utilization of each facility in marshalling station. In this paper, a long-term operating plan is optimized mainly for capacity utilization analysis. Firstly, a model is developed to minimize railcars’ average staying time with the constraints of minimum time intervals, marshalling track capacity, and so forth. Secondly, an algorithm is designed to solve this model based on genetic algorithm (GA) and simulation method. It divides the plan of whole planning horizon into many subplans, and optimizes them with GA one by one in order to obtain a satisfactory plan with less computing time. Finally, some numeric examples are constructed to analyze (1) the convergence of the algorithm, (2) the effect of some algorithm parameters, and (3) the influence of arrival train flow on the algorithm

    Self Sparse Generative Adversarial Networks

    Get PDF
    Generative Adversarial Networks (GANs) are an unsupervised generative model that learns data distribution through adversarial training. However, recent experiments indicated that GANs are difficult to train due to the requirement of optimization in the high dimensional parameter space and the zero gradient problem. In this work, we propose a Self Sparse Generative Adversarial Network (Self-Sparse GAN) that reduces the parameter space and alleviates the zero gradient problem. In the Self-Sparse GAN, we design a Self-Adaptive Sparse Transform Module (SASTM) comprising the sparsity decomposition and feature-map recombination, which can be applied on multi-channel feature maps to obtain sparse feature maps. The key idea of Self-Sparse GAN is to add the SASTM following every deconvolution layer in the generator, which can adaptively reduce the parameter space by utilizing the sparsity in multi-channel feature maps. We theoretically prove that the SASTM can not only reduce the search space of the convolution kernel weight of the generator but also alleviate the zero gradient problem by maintaining meaningful features in the Batch Normalization layer and driving the weight of deconvolution layers away from being negative. The experimental results show that our method achieves the best FID scores for image generation compared with WGAN-GP on MNIST, Fashion-MNIST, CIFAR-10, STL-10, mini-ImageNet, CELEBA-HQ, and LSUN bedrooms, and the relative decrease of FID is 4.76% ~ 21.84%

    Layered Functional Network Analysis of Gene Expression in Human Heart Failure

    Get PDF
    BACKGROUND: Although dilated cardiomyopathy (DCM) is a leading cause of heart failure (HF), the mechanism underlying DCM is not well understood. Previously, it has been demonstrated that an integrative analysis of gene expression and protein-protein interaction (PPI) networks can provide insights into the molecular mechanisms of various diseases. In this study we develop a systems approach by linking public available gene expression data on ischemic dilated cardiomyopathy (ICM), a main pathological form of DCM, with data from a layered PPI network. We propose that the use of a layered PPI network, as opposed to a traditional PPI network, provides unique insights into the mechanism of DCM. METHODS: Four Cytoscape plugins including BionetBuilder, NetworkAnalyzer, Cerebral and GenePro were used to establish the layered PPI network, which was based upon validated subcellular protein localization data retrieved from the HRPD and Entrez Gene databases. The DAVID function annotation clustering tool was used for gene ontology (GO) analysis. RESULTS: The assembled layered PPI network was divided into four layers: extracellular, plasma membrane, cytoplasm and nucleus. The characteristics of the gene expression pattern of the four layers were compared. In the extracellular and plasma membrane layers, there were more proteins encoded by down-regulated genes than by up-regulated genes, but in the other two layers, the opposite trend was found. GO analysis established that proteins encoded by up-regulated genes, reflecting significantly over-represented biological processes, were mainly located in the nucleus and cytoplasm layers, while proteins encoded by down-regulated genes were mainly located in the extracellular and plasma membrane layers. The PPI network analysis revealed that the Janus family tyrosine kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway might play an important role in the development of ICM and could be exploited as a therapeutic target of ICM. In addition, glycogen synthase kinase 3 beta (GSK3B) may also be a potential candidate target, but more evidence is required. CONCLUSION: This study illustrated that by incorporating subcellular localization information into a PPI network based analysis, one can derive greater insights into the mechanisms underlying ICM

    Is environmental tax legislation effective for pollution abatement in emerging economies? Evidence from China

    Get PDF
    This study estimates the effect of environmental tax legislation on air pollution, using the implementation of China’s Environmental Protection Tax Law (EPTL) as a quasi-natural experiment. For cities which have been authorized to raise tax rates by the EPTL, the air quality index (AQI) is 2.36 lower after the reform. The effect is reinforced in cities with stricter tax enforcement, lower fiscal stress, as well as higher initial pollution levels. Heterogeneity analyses show that the reform is more effective in cities with lower levels of marketization and legalization, as well as in developed cities. In addition, the impact of the reform is more significant in cities with higher levels of public participation in environmental governance, higher tax competition levels, and higher share of secondary industry. A series of robustness tests corroborates the results. This paper provides evidence that environmental tax legislation is efficacious in pollution abatement for developing economies

    Understanding airline price dispersion in the presence of high-speed rail

    Get PDF
    This paper examines the price dispersion among China's “Big Three”, namely, Air China, China Eastern and China Southern in the presence of high-speed rail (HSR). It has been found that HSR is positively and significantly associated with airline price dispersion on the long-haul routes, which may suggest that the presence of HSR can facilitate airline cooperation in setting prices and outputs, thereby leading to greater price dispersion. However, on the short-haul routes where HSR is highly substitutable, the HSR competition effect dominates, and smaller price dispersion is observed. All the market structure and competition variables included in this study support the conclusion that price dispersion is greater in more concentrated and more densely travelled markets. The contribution of airline cost to price dispersion is limited

    Effect of nematic order on the low-energy spin fluctuations in detwinned BaFe1.935_{1.935}Ni0.065_{0.065}As2_2

    Get PDF
    The origin of nematic order remains one of the major debates in iron-based superconductors. In theories based on spin nematicity, one major prediction is that the spin-spin correlation length at (0,Ď€\pi) should decrease with decreasing temperature below the structural transition temperature TsT_s. Here we report inelastic neutron scattering studies on the low-energy spin fluctuations in BaFe1.935_{1.935}Ni0.065_{0.065}As2_2 under uniaxial pressure. Both intensity and spin-spin correlation start to show anisotropic behavior at high temperature, while the reduction of the spin-spin correlation length at (0,Ď€\pi) happens just below TsT_s, suggesting strong effect of nematic order on low-energy spin fluctuations. Our results favor the idea that treats the spin degree of freedom as the driving force of the electronic nematic order.Comment: 5 pages, 4 figure

    Characterization of one sheep border disease virus in China

    Get PDF
    • …
    corecore