7,877 research outputs found

    Alfvenic Ion Temperature Gradient Activities in a Weak Magnetic Shear Plasma

    Full text link
    We report the first experimental evidence of Alfvenic ion temperature gradient (AITG) modes in HL-2A Ohmic plasmas. A group of oscillations with f=1540f=15-40 kHz and n=36n=3-6 is detected by various diagnostics in high-density Ohmic regimes. They appear in the plasmas with peaked density profiles and weak magnetic shear, which indicates that corresponding instabilities are excited by pressure gradients. The time trace of the fluctuation spectrogram can be either a frequency staircase, with different modes excited at different times or multiple modes may simultaneously coexist. Theoretical analyses by the extended generalized fishbone-like dispersion relation (GFLDR-E) reveal that mode frequencies scale with ion diamagnetic drift frequency and ηi\eta_i, and they lie in KBM-AITG-BAE frequency ranges. AITG modes are most unstable when the magnetic shear is small in low pressure gradient regions. Numerical solutions of the AITG/KBM equation also illuminate why AITG modes can be unstable for weak shear and low pressure gradients. It is worth emphasizing that these instabilities may be linked to the internal transport barrier (ITB) and H-mode pedestal physics for weak magnetic shear.Comment: 9 pages, 7 figure

    Random Lasing Action from Randomly Assembled ZnS Nanosheets

    Get PDF
    Lasing characteristics of randomly assembled ZnS nanosheets are studied at room temperature. Under 266-nm optical excitation, sharp lasing peaks emitted at around 332 nm with a linewidth less than 0.4 nm are observed in all directions. In addition, the dependence of lasing threshold intensity with the excitation area is shown in good agreement with the random laser theory. Hence, it is verified that the lasing characteristics of randomly assembled ZnS nanosheets are attributed to coherent random lasing action

    Fundamental Flaw in the Current Construction of the TiO2 Electron Transport Layer of Perovskite Solar Cells and Its Elimination

    Get PDF
    The top-performing perovskite solar cells (efficiency > 20%) generally rely on the use of a nanocrystal TiO2 electron transport layer (ETL). However, the efficacies and stability of the current stereotypically prepared TiO2 ETLs employing commercially available TiO2 nanocrystal paste are far from their maximum values. As revealed herein, the long-hidden reason for this discrepancy is that acidic protons (∼0.11 wt %) always remain in TiO2 ETLs after high-temperature sintering due to the decomposition of the organic proton solvent (mostly alcohol). These protons readily lead to the formation of Ti–H species upon light irradiation, which act to block the electron transfer at the perovskite/TiO2 interface. Affront this challenge, we introduced a simple deprotonation protocol by adding a small amount of strong proton acceptors (sodium ethoxide or NaOH) into the common TiO2 nanocrystal paste precursor and replicated the high-temperature sintering process, which wiped out nearly all protons in TiO2 ETLs during the sintering process. The use of deprotonated TiO2 ETLs not only promotes the PCE of both MAPbI3-based and FA0.85MA0.15PbI2.55Br0.45-based devices over 20% but also significantly improves the long-term photostability of the target devices upon 1000 h of continuous operation

    Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems

    Full text link
    [EN] Perfect, broadband and asymmetric sound absorption is theoretically, numerically and experimentally reported by using subwavelength thickness panels in a transmission problem. The panels are composed of a periodic array of varying crosssection waveguides, each of them being loaded by Helmholtz resonators (HRs) with graded dimensions. The low cut-off frequency of the absorption band is fixed by the resonance frequency of the deepest HR, that reduces drastically the transmission. The preceding HR is designed with a slightly higher resonance frequency with a geometry that allows the impedance matching to the surrounding medium. Therefore, reflection vanishes and the structure is critically coupled. This results in perfect sound absorption at a single frequency. We report perfect absorption at 300¿Hz for a structure whose thickness is 40 times smaller than the wavelength. Moreover, this process is repeated by adding HRs to the waveguide, each of them with a higher resonance frequency than the preceding one. Using this frequency cascade effect, we report quasi-perfect sound absorption over almost two frequency octaves ranging from 300 to 1000¿Hz for a panel composed of 9 resonators with a total thickness of 11¿cm, i.e., 10 times smaller than the wavelength at 300¿Hz.The authors acknowledge fnancial support from the Metaudible Project No. ANR-13-BS09-0003, cofunded by ANR and FRAE.Jimenez, N.; Romero García, V.; Pagneux, V.; Groby, J. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports. 7(1). doi:10.1038/s41598-017-13706-4S1359571Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature materials 11, 917–924 (2012).Ding, Y., Liu, Z., Qiu, C. & Shi, J. Metamaterial with simultaneously negative bulk modulus and mass density. Physical review letters 99, 093904 (2007).Christensen, J., Kadic, M., Kraft, O. & Wegener, M. Vibrant times for mechanical metamaterials. Mrs Communications 5, 453–462 (2015).Yang, Z., Mei, J., Yang, M., Chan, N. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nature Reviews Materials 1, 16001 (2016).Landy, N. I., Sajuyigbe, S., Mock, J., Smith, D. & Padilla, W. Perfect metamaterial absorber. Physical review letters 100, 207402 (2008).Watts, C. M., Liu, X. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Advanced materials 24 (2012).Cui, Y. et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser & Photonics Reviews 8, 495–520 (2014).Lee, Y. P., Rhee, J. Y., Yoo, Y. J. & Kim, K. W. Metamaterials for perfect absorption. Springer series in materials science (ISSN 0933-033X 236 (2016).Cui, Y. et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano letters 12, 1443–1447 (2012).Ding, F., Cui, Y., Ge, X., Jin, Y. & He, S. Ultra-broadband microwave metamaterial absorber. Applied physics letters 100, 103506 (2012).Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012).Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014).Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016).Jiang, X. et al. Ultra-broadband absorption by acoustic metamaterials. Applied Physics Letters 105, 243505 (2014).Leclaire, P., Umnova, O., Dupont, T. & Panneton, R. Acoustical properties of air-saturated porous material with periodically distributed dead-end poresa). J. Acoust. Soc. Am. 137, 1772–1782 (2015).Groby, J.-P., Huang, W., Lardeau, A. & Aurégan, Y. The use of slow waves to design simple sound absorbing materials. J. Appl. Phys. 117, 124903 (2015).Groby, J.-P., Pommier, R. & Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J. Acoust. Soc. Am. 139, 1660–1671 (2016).Li, Y. & Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502 (2016).Romero-García, V., Theocharis, G., Richoux, O. & Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America 139, 3395–3403 (2016).Jiménez, N., Huang, W., Romero-García, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters 109, 121902 (2016).Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 95, 014205 (2017).Achilleos, V., Theocharis, G., Richoux, O. & Pagneux, V. Non-hermitian acoustic metamaterials: Role of exceptional points in sound absorption. Physical Review B 95, 144303 (2017).Santillán, A. & Bozhevolnyi, S. I. Acoustic transparency and slow sound using detuned acoustic resonators. Phys. Rev. B 84, 064304 (2011).Chong, Y., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Physical review letters 105, 053901 (2010).Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).Groby, J.-P., Duclos, A., Dazel, O., Boeckx, L. & Lauriks, W. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating. J. Acoust. Soc. Am. 129, 3035–3046 (2011).Lagarrigue, C., Groby, J., Tournat, V., Dazel, O. & Umnova, O. Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions. J. Acoust. Soc. Am. 134, 4670–4680 (2013).Boutin, C. Acoustics of porous media with inner resonators. J. Acoust. Soc. Am. 134, 4717–4729 (2013).Groby, J.-P. et al. Enhancing the absorption properties of acoustic porous plates by periodically embedding helmholtz resonators. J. Acoust. Soc. Am. 137, 273–280 (2015).Wu, T., Cox, T. & Lam, Y. From a profiled diffuser to an optimized absorber. The Journal of the Acoustical Society of America 108, 643–650 (2000).Yang, M., Chen, S., Fu, C. & Sheng, P. Optimal sound-absorbing structures. Materials Horizons (2017).Yang, J., Lee, J. S. & Kim, Y. Y. Multiple slow waves in metaporous layers for broadband sound absorption. Journal of Physics D: Applied Physics 50, 015301 (2016).Merkel, A., Theocharis, G., Richoux, O., Romero-García, V. & Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl. Phys. Lett. 107, 244102 (2015).Piper, J. R., Liu, V. & Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110 (2014).Yang, M. et al. Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107, 104104 (2015).Jiménez, N. et al. Broadband quasi perfect absorption using chirped multi-layer porous materials. AIP Advances 6, 121605 (2016).Tsakmakidis, K. L., Boardman, A. D. & Hess, O. Trapped rainbow storage of light in metamaterials. Nature 450, 397–401 (2007).Zhu, J. et al. Acoustic rainbow trapping. Scientific reports 3 (2013).Romero-Garcia, V., Picó, R., Cebrecos, A., Sanchez-Morcillo, V. & Staliunas, K. Enhancement of sound in chirped sonic crystals. Applied Physics Letters 102, 091906 (2013).Ni, X. et al. Acoustic rainbow trapping by coiling up space. Scientific reports 4 (2014).Colombi, A., Colquitt, D., Roux, P., Guenneau, S. & Craster, R. V. A seismic metamaterial: The resonant metawedge. Scientific reports 6 (2016).Powell, M. J. A fast algorithm for nonlinearly constrained optimization calculations. In Numerical analysis, 144–157 (Springer, 1978).Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558 (1991).Theocharis, G., Richoux, O., García, V. R., Merkel, A. & Tournat, V. Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New J. Phys. 16, 093017 (2014).Kergomard, J. & Garcia, A. Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae. J. Sound Vib. 114, 465–479 (1987).Dubos, V. et al. Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acustica united with Acustica 85, 153–169 (1999).Mechel, F. P. Formulas of acoustics, 2nd ed. (Springer Science & Business Media, 2008)

    A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    Full text link
    We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×\times105^5 GWth_{\rm th}-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241^{241}Am-13^{13}C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin22θ13\sin^{2}2\theta_{13} and Δmee2|\Delta m^2_{ee}| were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave sin22θ13=0.084±0.005\sin^{2}2\theta_{13} = 0.084\pm0.005 and Δmee2=(2.42±0.11)×103|\Delta m^{2}_{ee}|= (2.42\pm0.11) \times 10^{-3} eV2^2 in the three-neutrino framework.Comment: Updated to match final published versio

    New measurement of θ13\theta_{13} via neutron capture on hydrogen at Daya Bay

    Full text link
    This article reports an improved independent measurement of neutrino mixing angle θ13\theta_{13} at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse β\beta-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced 9^9Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resulted in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded sin22θ13=0.071±0.011\sin^22\theta_{13} = 0.071 \pm 0.011 in the three-neutrino-oscillation framework. The combination of this result with the gadolinium-capture result is also reported.Comment: 26 pages, 23 figure
    corecore