Supplementary Information # A Fundamental Flaw in Current Construction of TiO₂ Electron Transport Layer of Perovskite Solar Cells and Its ### Elimination Yan Yan^{#1, 3, 4}, Cheng Liu^{#2}, Yi Yang², Guoxiang Hu⁵, Vandana Tiwari^{4, 7}, De-en Jiang⁶, Wei Peng¹, Ajay Jha^{4, 11, 12}, Hong-Guang Duan^{4, 8, 9}, Friedjof Tellkamp⁴, Yong Ding², Weidong Shi³, Shouqi Yuan³, Dwayne Miller^{4, 9}, Wanhong Ma^{1, 10*}, Jincai Zhao^{1, 10} 1 Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China - 2 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China - 3 School of Chemistry and Chemical Engineering, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212013 China - 4 The Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany - 5 Department of Chemistry and Biochemistry, Queens College of the City University of New York, Queens, New York 11367, United States - 6 Department of Chemistry, University of California, Riverside, California 92521, US - 7 Department of Chemistry, University of Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany - 8 Institut für Theoretische Physik, Universitat Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany - 9 The Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Canada 10 University of Chinese Academy of Sciences, Beijing 100049, China - 11 The Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire OX11 0FA, UK - 12 Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK - # Author contribution: authors contribute equally to this paper. - *Corresponding author. Email: whma@iccas.ac.cn (W. Ma) #### **Supplementary Methods** #### **Chemicals** Lead (II) iodide (99.99%, trace metals basis) was purchased from TCI (Japan), and CH₃NH₃I was purchased from Xi'an Polymer Light Technology Corp. (China). TiO₂ pastes (18-nm and 30-nm, anatase) were obtained from Dyesol (Australia). Sodium hydroxide (NaOH) and sodium ethoxide (EtONa) were purchased from Acros (Beijing, China). DMF, chlorobenzene, lithium bis (trifluoromethylsulfonyl) imide (Li-TFSI) and 4-tert-butylpyridine (tBP) were purchased from Aldrich (U.S.), and spiro-MeOTAD was acquired from Xi'an Polymer Light Technology (China). All of the above reagents were used as received. Homemade 15-nm TiO_2 nanocrystal paste was prepared according to reference (1) by using 15-nm anatase TiO_2 powder purchased from Alfa (Shanghai, China). In a typical preparation procedure, 1 g of TiO_2 nanoparticles, 4.06 g of terpineol and 5 mL of ethanol were mixed under vigorous agitation. Then, 4.5 mL of a solution of ethylcellulose in ethanol was added to the mixture. The resulting solution was further stirred and sonicated for 24 h. The excess ethanol was then removed from the solution using a rotary evaporator at 58°C to obtain a viscous paste. The concentrated paste was redissolved in ethanol to 15 $_{\rm wt}$ % before use. #### Preparation of normal TiO₂ ETLs A thick, dense blocking layer of TiO₂ (bl-TiO₂) was first deposited onto an F-doped SnO₂ (FTO) substrate by spin coating to prevent direct contact between the FTO and the hole-conducting layer. The precursor solution contained 0.6 mL of titanium isopropoxide and 0.4 mL of bis(acetylacetonate) in 7 mL of anhydrous isopropanol. The resulting TiO₂ blocking layer was then sintered at 460°C. A mesoporous TiO₂ layer (mp-TiO₂) with a thickness of approximately 160-180 nm was then deposited by spin coating onto the bl-TiO₂/FTO substrate. A 15 wt% ethanol paste of anatase TiO₂ nanocrystals was used as the mp-TiO₂ precursor. After spin coating, the substrate was immediately dried on a hotplate at 120°C and then calcined at 460°C~550°C to remove the organic components. Unless stated otherwise, the normal TiO₂ ETLs were all prepared at 550°C. ### Preparation of NaOH-TiO₂ and EtONa-TiO₂ ETLs Similar to the preparation of normal TiO₂ ETLs, a thick, dense bl-TiO₂ layer was first deposited onto the FTO substrate by spin coating. An mp-TiO₂ layer was then deposited onto the bl-TiO₂/FTO substrate. Before coating the mp-TiO₂ layer, 0.1 mL of ethanolic NaOH or EtONa at specific concentrations was first added to 1 mL of mp-TiO₂ precursor (15 wt% ethanol paste) to create a basic paste. The mass ratios of the added base to TiO₂ were 0.34 wt%~1.36 wt% for NaOH and 0.67 wt%~2.68 wt% for EtONa. Then, the basic paste was used as the precursor of the deprotonated mp-TiO₂ layer. After spin coating, the substrate was immediately dried on a hotplate at 120°C and then calcined at 460°C~550°C to remove the organic components. Unless otherwise stated, all NaOH-TiO₂ and EtONa-TiO₂ ETLs were prepared at 550°C. #### Preparation of the H+-TiO₂ ETLs Similar to the preparation of normal TiO₂ ETLs, a thick, dense bl-TiO₂ layer was first deposited onto the FTO substrate by spin coating. An mp-TiO₂ layer was then deposited onto the bl-TiO₂/FTO substrate. Before coating the mp-TiO₂ layer, 0.1 mL of an aqueous solution at pH=1~10 (adjusted with H₂SO₄ or NaOH) was added to 1 mL of mp-TiO₂ precursor solution to load various amounts of protons into the TiO₂ nanocrystals. After spin coating, the substrate was immediately dried on a hotplate at 120°C and then calcined at 550°C to remove the organic components. ## Preparation of Na₂SO₄-TiO₂, NaCl-TiO₂ and KCl-TiO₂ ETLs Similar to the preparation of normal TiO₂ ETLs, a thick, dense bl-TiO₂ layer was first deposited onto the FTO substrate by spin coating. An mp-TiO₂ layer was then deposited onto the bl-TiO₂/FTO substrate. Before coating the mp-TiO₂ layer, 0.1 mL of aqueous solution of Na₂SO₄ (1.40 wt% to TiO₂), NaCl (1.15 wt% to TiO₂) or KCl (1.46 wt% to TiO₂) was first added to 1 mL of mp-TiO₂ precursor (15 wt% ethanol paste). After spin coating, the substrate was immediately dried on a hotplate at 120°C and then calcined at 500°C to remove the organic components. #### Quantification of the residual protons in the TiO₂ ETLs The proton content in TiO₂ ETLs was quantified by a back titration using NaOH solution and the MAS-NMR ${}^{1}H$ spectra. We used the H^{+} -TiO₂ ETL (pH = 1) sample as the typical reference sample, and it was first titrated with aqueous NaOH. In a typical titration procedure, the H⁺-TiO₂ ETL sample was removed from its FTO substrate and ground into a fine powder. Then, 100 mg of H⁺-TiO₂ powder was immersed in 5 mL of 0.05 M NaOH aqueous solution and allowed to stand for 30 min. After separation by centrifugation, the H⁺-TiO₂ ETL sample for titration was washed several times. The resulting supernatant was collected and then diluted to 25 mL. Standard aqueous HCl solution (25 mL, 0.01 M) was then employed to back titrate the residual NaOH in the supernatant to calculate the amount of NaOH consumed to determine the titratable acidic protons on the H⁺-TiO₂ ETL (pH = 1) sample. After titration with 0.05 M aqueous NaOH, an MAPbI₃ layer was coated on the titrated H⁺-TiO₂ ETL powder (using CH₃NH₃I and PbI₂ in DMSO and DMF (v/v=1:4) as mentioned above) as an internal reference to compare the decrease in the intensity of the acidic proton signal in the MAS-NMR ¹H spectrum of the resulting MAPbI₃/TiO₂ sample, as shown in **Fig. S2**. This change can be used to calculate the total proton content. Under our experimental conditions, the acidic protons in the H⁺-TiO₂ ETL (pH =1) that titrated with 0.05 M NaOH was 2.6×10-7 mol/mg TiO₂. According to the decrease in the relative intensity of the 6.35 ppm peak (assigned to the acidic protons) after titration, the total acidic protons in the H⁺-TiO₂ ETL (pH = 1) sample as calculated to be 1.24×10^{-6} mol/mg TiO₂. Accordingly, the proton content in all the other samples can be calculated according to the intensity of their 6.35 ppm peak relative to their 3.31 ppm peak (assigned to C-H in MAPbI₃) in their MAS-NMR ¹H spectrum, as shown in **Table S1**. #### Computational method. DFT calculations were performed using the Vienna *ab initio* simulation package (VASP) (2). The electron exchange correlation was represented by the functional of Perdew, Burke, and Ernzerhof of generalized gradient approximation (3). The ion–electron interactions were described with the projector augmented-wave method (4). The convergence threshold for structural optimization was set to 0.025 eV/Å in force. The climbing-image nudged elastic band method implemented in VASP was used to determine the energy barrier (5). The transition states were obtained by relaxing the force below 0.05 eV/Å. For the hydrogen adsorption calculations, the TiO₂/MAPbI₃ interface was modeled by the (101)-TiO₂/(110)-MAPbI₃ surface with a low interface lattice mismatch (6). A 3×5×3 perovskite slab containing 45 MAPbI₃ units combined with a 5×3×2 anatase TiO₂ slab containing 120 TiO₂ units was used. A vacuum of 15 Å along the z-direction was employed. To save computational time, a smaller system (3×3×2 perovskite slab and 5×2×2 anatase TiO₂ slab) was used for the energy barrier calculations. The average hydrogen adsorption energies (ΔE_H values) at the perovskite/TiO₂ interface were calculated by ΔE_H = [E(interface + 30H) – E(interface) –15E(H₂)]/15, where E(interface + 30H) and E(interface) represent the total energies of the perovskite/TiO₂ interface with thirty adsorbed hydrogens and zero adsorbed hydrogens, respectively. E(H₂) represents the total energy of one H₂ molecule in the gas phase. A negative value of ΔE_H suggests favorable adsorption. #### References - (1) Y. Kusumawati, M. A. Martoprawiro, Th. Pauporté, *J. Phys. Chem. C* **118**, 9974-9981 (2014) - (2) G. Kresse, J. Furthmüller, *Phys. Rev. B: Condens. Matter Mater. Phys.* **54**, 11169–11186 (1996) - (3) J. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 77, 3865–3868 (1996) - (4) P. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys. 50, 17953–17979 (1994). - (5) G. Henkelman, B. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901–9904 (2000). - (6) E. Mosconi, E. Ronca, F. De Angelis, J. Phys. Chem. Lett. 5, 2619–2625 (2014). # **Supplementary Figures and Tables:** **Fig. S1.** MAS-NMR 1 H spectra of MAPbI₃/TiO₂ samples with H⁺-TiO₂ ETLs prepared by adding aqueous solutions with pH=1 \sim 10 (adjusted with H₂SO₄ or NaOH) into the paste. **Fig. S2.** MAS-NMR 1 H spectra of MAPbI₃/TiO₂ samples with H⁺-TiO₂ ETL (pH=1) before and after titration with 0.05 M aqueous NaOH. Fig. S3. The MAS 1H NMR spectra of the normal TiO_2 samples prepared by using ethanol- d_0/d_6 as the solvent in the precursor paste. **Fig. S4. (A)** The MAS ¹H NMR spectra of the MAPbI₃/TiO₂ samples with normal and EtONa-TiO₂-1.34 ETLs prepared with **(A)** commercial 18-nm TiO₂ paste, **(B)** commercial 30-nm TiO₂ paste and **(C)** homemade 15-nm TiO₂ paste. All the TiO₂ pastes were in the anatase phase. **Fig. S5.** MAS ¹H NMR spectra of MAPbI₃/TiO₂ samples with normal and EtONa-TiO₂-1.34 ETLs prepared at **(A)** 460°C, **(B)** 490°C, **(C)** 520°C and **(D)** 550°C. **Fig. S6.** XRD spectra of MAPbI $_3$ layer that coated on the normal TiO $_2$ ETL and EtONa-TiO $_2$ -1.34 ETL. **Fig. S7.** UV-vis absorption spectra of MAPbI $_3$ perovskite layers coated on normal and EtONa-TiO $_2$ -1.34 ETLs. **Fig. S8.** *J-V* characteristics determined under simulated AM1.5 G illumination of MAPbI₃ (**A**) and $FA_{0.85}MA_{0.15}PbI_{2.55}Br_{0.45}$ (**B**) PSC devices with normal TiO_2 (control), Na_2SO_4 - TiO_2 , NaCl- TiO_2 and KCl- TiO_2 ETLs. **Fig. S9.** Space-charge-limited current (SCLC) curves of $FTO/TiO_2/Au$ devices with normal and $EtONa-TiO_2-1.34$ ETLs. **Fig. S10.** Femtosecond transient absorption: 2D map (left) and spectral traces for selected time points (right) recorded following 515 nm laser pulse excitation of (**A**) pristine MAPbI₃, (**B**) MAPbI₃/TiO₂, (**C**) MAPbI₃/NaOH-TiO₂-0.34 and (**D**) MAPbI₃/EtONa-TiO₂-1.34 samples. **Fig. S11.** The increase of Ti-H in 60 min irradiation on the MAPbI₃/TiO₂ sample with normal TiO₂ ETL. (The quantification based on the MAS-NMR peak intensity profiles in Table S2) **Fig. S12. (A)** J-V characteristics of optimized devices with MAPbI₃ PSCs determined under simulated AM1.5 G illumination for the control (with a normal TiO₂ ETL) and target (with a EtONa-TiO₂-1.34 ETL) devices with reverse and forward scans. The details of the photovoltaic parameters are shown in Table S4. **(B)** The corresponding incident photon-to-current conversion efficiencies (IPCEs) and the integrated J_{sc} spectra of the control and target devices. **(C)** Histogram extracted from a comparison of PCEs of 30 batches (60 devices) of control and target devices. #### **Supplementary Tables** **Table S1.** Peak intensity profiles of MAS-NMR ¹H spectra of MAPbI₃/TiO₂ samples with different TiO₂ ETLs. (All peaks are normalized with the 3.31 ppm peak as 1) | Samples | 6.35 ppm | 3.31 ppm | 1.41 ppm | H ⁺ amount | |--|-------------------|----------|----------|-----------------------| | | (H ⁺) | (C-H) | (Ti-H) | (mol/mg) | | H ⁺ -TiO ₂ (H ₂ SO ₄) | 1.57 | 1.00 | 0.24 | 2.37×10 ⁻⁶ | | H ⁺ -TiO ₂ (HCl) | 1.06 | 1.00 | 0.16 | 1.60×10 ⁻⁶ | | H ⁺ -TiO ₂ (HAc) | 1.21 | 1.00 | 0.25 | 1.83×10 ⁻⁶ | | H^+ -TiO ₂ (pH=1) | 0.82 | 1.00 | 0.23 | 1.24×10 ⁻⁶ | | H^+ -TiO ₂ (pH=3) | 0.74 | 1.00 | 0.20 | 1.12×10 ⁻⁶ | | H^+ -TiO ₂ (pH=5) | 0.69 | 1.00 | 0.17 | 1.05×10 ⁻⁶ | | H ⁺ -TiO ₂ (pH=7) | 0.57 | 1.00 | N/A | 8.70×10 ⁻⁷ | | H ⁺ -TiO ₂ (pH=10) | 0.39 | 1.00 | N/A | 5.95×10 ⁻⁷ | | Normal | 0.72 | 1.00 | 0.17 | 1.11×10 ⁻⁶ | | NaOH-TiO ₂ -0.34 | N/A | 1.00 | N/A | N/A | | EtONa-TiO ₂ -1.34 | N/A | 1.00 | N/A | N/A | **Table S2.** Quantification of hydrogen terminals based on the peak intensity profiles of MAS-NMR ¹H spectra of MAPbI₃/TiO₂ samples under different irradiation time with normal TiO₂ ETLs. (All peaks are normalized with the 3.31 ppm peak as 1) | , 11 1 / | | | | | | | | |----------------------------------|-------------------|----------|----------|-----------------------|----------------------|--|--| | Samples | 6.35 ppm | 3.31 ppm | 1.41 ppm | H ⁺ | Ti-H | | | | | (H ⁺) | (C-H) | (Ti-H) | amount | amount | | | | | | | | (mol/mg) | (mol/mg) | | | | Normal TiO ₂ (0 min) | 0.724 | 1.00 | 0.16 | 1.09×10 ⁻⁶ | 2.4×10 ⁻⁷ | | | | Normal TiO ₂ (30 min) | 0.602 | 1.00 | 0.26 | 9.06×10 ⁻⁷ | 3.9×10 ⁻⁷ | | | | Normal TiO ₂ (60 min) | 0.587 | 1.00 | 0.30 | 8.83×10 ⁻⁷ | 4.3×10 ⁻⁷ | | | **Table S3.** Photovoltaic parameters of the MAPbI₃ devices with Et-O-Na-TiO₂ ETLs prepared with different EtONa mass ratios (0.67 $_{\rm wt}$ %~2.68 $_{\rm wt}$ %) to TiO₂ in the basic paste. | EtONa | V_{oc} | J_{sc} | FF | PCE | |----------|----------|-----------------------|-------|-------| | content | (V) | (mA/cm ²) | (%) | (%) | | 0 wt% | 1.03 | 22.52 | 75.63 | 17.55 | | 0.67 wt% | 1.06 | 23.96 | 75.73 | 19.20 | | 1.34 wt% | 1.10 | 23.50 | 77.68 | 20.11 | | 2.01 wt% | 1.05 | 22.95 | 78.34 | 18.83 | | 2.68 wt% | 1.03 | 23.66 | 75.59 | 18.46 | **Table S4.** Photovoltaic parameters of the MAPbI₃ devices with NaOH-TiO₂ ETLs prepared with different NaOH mass ratios (0.34 $_{\rm wt}$ %~1.36 $_{\rm wt}$ %) to TiO₂ in the basic paste. | NaOH | V_{oc} | J_{sc} | FF | PCE | |---------------|----------|-----------------------|-----|-----| | concentration | (V) | (mA/cm ²) | (%) | (%) | | 0 wt% | 1.02 | 22.55 | 76.59 | 17.57 | |----------------------|------|-------|-------|-------| | 0.34 wt% | 1.03 | 23.84 | 77.62 | 19.11 | | 0.68 wt% | 1.06 | 22.84 | 77.83 | 18.88 | | 1.02 wt% | 1.04 | 22.61 | 77.50 | 18.28 | | 1.36 _{wt} % | 1.05 | 22.27 | 76.84 | 17.91 | **Table S5.** Photovoltaic parameters of the optimized target and control MAPbI $_3$ devices with normal and EtONa-TiO $_2$ -1.34 ETLs. | Devices | Scan | V_{oc} | J_{sc} | FF | PCE | |---------|-----------|----------|-----------------------|-------|-------| | | direction | (V) | (mA/cm ²) | (%) | (%) | | Target | Reverse | 1.11 | 23.42 | 78.04 | 20.33 | | device | Forward | 1.10 | 23.56 | 76.92 | 19.74 | | Control | Reverse | 1.04 | 22.61 | 77.50 | 18.28 | | device | Forward | 1.02 | 22.51 | 70.38 | 16.10 | **Table S6.** Photovoltaic parameters of the optimized target and control $FA_{0.85}MA_{0.15}PbI_{2.55}Br_{0.45}$ devices with normal and EtONa-TiO₂-1.34 ETLs. | Devices | Scan | Voc | J_{sc} | FF | PCE | |---------|-----------|------|-----------------------|-------|-------| | | direction | (V) | (mA/cm ²) | (%) | (%) | | Target | Reverse | 1.13 | 23.51 | 79.03 | 21.00 | | device | Forward | 1.13 | 23.27 | 78.26 | 20.57 | | Control | Reverse | 1.07 | 22.42 | 74.33 | 17.91 | | device | Forward | 1.04 | 22.44 | 64.16 | 15.01 |