2,875 research outputs found
Quantum Computing via The Bethe Ansatz
We recognize quantum circuit model of computation as factorisable scattering
model and propose that a quantum computer is associated with a quantum
many-body system solved by the Bethe ansatz. As an typical example to support
our perspectives on quantum computation, we study quantum computing in
one-dimensional nonrelativistic system with delta-function interaction, where
the two-body scattering matrix satisfies the factorisation equation (the
quantum Yang--Baxter equation) and acts as a parametric two-body quantum gate.
We conclude by comparing quantum computing via the factorisable scattering with
topological quantum computing.Comment: 6 pages. Comments welcom
The importance of the mixed phase in hybrid stars built with the Nambu-Jona-Lasinio model
We investigate the structure of hybrid stars based on two different
constructions: one is based on the Gibbs condition for phase coexistence and
considers the existence of a mixed phase (MP), and the other is based on the
Maxwell construction and no mixed phase is obtained. The hadron phase is
described by the non-linear Walecka model (NLW) and the quark phase by the
Nambu-Jona-Lasinio model (NJL). We conclude that the masses and radii obtained
are model dependent but not significantly different for both constructions.Comment: 8 pages, 7 figures, 3 table
A Novel Approach to the Common Due-Date Problem on Single and Parallel Machines
This paper presents a novel idea for the general case of the Common Due-Date
(CDD) scheduling problem. The problem is about scheduling a certain number of
jobs on a single or parallel machines where all the jobs possess different
processing times but a common due-date. The objective of the problem is to
minimize the total penalty incurred due to earliness or tardiness of the job
completions. This work presents exact polynomial algorithms for optimizing a
given job sequence for single and identical parallel machines with the run-time
complexities of for both cases, where is the number of jobs.
Besides, we show that our approach for the parallel machine case is also
suitable for non-identical parallel machines. We prove the optimality for the
single machine case and the runtime complexities of both. Henceforth, we extend
our approach to one particular dynamic case of the CDD and conclude the chapter
with our results for the benchmark instances provided in the OR-library.Comment: Book Chapter 22 page
Robust orthogonal parameterization of evolution strategy for adaptive laser pulse shaping
Many spectroscopic applications of femtosecond laser pulses require properly-shaped spectral phase profiles. The optimal phase profile can be programmed on the pulse by adaptive pulse shaping. A promising optimization algorithm for such adaptive experiments is evolution strategy (ES). Here, we report a four fold increase in the rate of convergence and ten percent increase in the final yield of the optimization, compared to the direct parameterization approach, by using a new version of ES in combination with Legendre polynomials and frequency-resolved detection. Such a fast learning rate is of paramount importance in spectroscopy for reducing the artifacts of laser drift, optical degradation, and precipitation
Quantum information processing using Josephson junctions coupled through cavities
Josephson junctions have been shown to be a promising solid-state system for
implementation of quantum computation. The significant two-qubit gates are
generally realized by the capacitive coupling between the nearest neighbour
qubits. We propose an effective Hamiltonian to describe charge qubits coupled
through the cavity. We find that nontrivial two-qubit gates may be achieved by
this coupling. The ability to interconvert localized charge qubits and flying
qubits in the proposed scheme implies that quantum network can be constructed
using this large scalable solid-state system.Comment: 5 pages, to appear in Phys Rev A; typos corrected, solutions in last
eqs. correcte
Face Detection on Embedded Systems
Over recent years automated face detection and recognition (FDR) have gained significant attention from the commercial and research sectors. This paper presents an embedded face detection solution aimed at addressing the real-time image processing requirements within a wide range of applications. As face detection is a computationally intensive task, an embedded solution would give rise to opportunities for discrete economical devices that could be applied and integrated into a vast majority of applications. This work focuses on the use of FPGAs as the embedded prototyping technology where the thread of execution is carried out on an embedded soft-core processor. Custom instructions have been utilized as a means of applying software/hardware partitioning through which the computational bottlenecks are moved to hardware. A speedup by a factor of 110 was achieved from employing custom instructions and software optimizations
Charmonium states in QCD-inspired quark potential model using Gaussian expansion method
We investigate the mass spectrum and electromagnetic processes of charmonium
system with the nonperturbative treatment for the spin-dependent potentials,
comparing the pure scalar and scalar-vector mixing linear confining potentials.
It is revealed that the scalar-vector mixing confinement would be important for
reproducing the mass spectrum and decay widths, and therein the vector
component is predicted to be around 22%. With the state wave functions obtained
via the full-potential Hamiltonian, the long-standing discrepancy in M1
radiative transitions of and are alleviated
spontaneously. This work also intends to provide an inspection and suggestion
for the possible among the copious higher charmonium-like states.
Particularly, the newly observed X(4160) and X(4350) are found in the
charmonium family mass spectrum as MeV and MeV, which strongly favor the assignments
respectively. The corresponding radiative transitions, leptonic and two-photon
decay widths have been also predicted theoretically for the further
experimental search.Comment: 16 pages,3 figure
Long-term trends in tropical cyclone tracks around Korea and Japan in late summer and early fall
This study investigates long-term trends in tropical cyclones (TCs) over the extratropical western North Pacific (WNP) over a period of 35 years (1982-2016). The area analyzed extended across 30-45 degrees N and 120-150 degrees E, including the regions of Korea and Japan that were seriously affected by TCs. The northward migration of TCs over the WNP to the mid-latitudes showed a sharp increase in early fall. In addition, the duration of TCs over the WNP that migrated northwards showed an increase, specifically in early to mid-September. Therefore, more recently, TC tracks have been observed to significantly extend into the mid-latitudes. The recent northward extension of TC tracks over the WNP in early fall was observed to be associated with changes in environmental conditions that were favorable for TC activities, including an increase in sea surface temperature (SST), decrease in vertical wind shear, expansion of subtropical highs, strong easterly steering winds, and an increase in relative vorticity. In contrast, northward migrations of TCs to Korea and Japan showed a decline in late August, because of the presence of unfavorable environmental conditions for TC activities. These changes in environmental conditions, such as SST and vertical wind shear, can be partially associated with the Pacific decadal oscillation
Quantum computing with mixed states
We discuss a model for quantum computing with initially mixed states.
Although such a computer is known to be less powerful than a quantum computer
operating with pure (entangled) states, it may efficiently solve some problems
for which no efficient classical algorithms are known. We suggest a new
implementation of quantum computation with initially mixed states in which an
algorithm realization is achieved by means of optimal basis independent
transformations of qubits.Comment: 2 figures, 52 reference
Constraint methods for determining pathways and free energy of activated processes
Activated processes from chemical reactions up to conformational transitions
of large biomolecules are hampered by barriers which are overcome only by the
input of some free energy of activation. Hence, the characteristic and
rate-determining barrier regions are not sufficiently sampled by usual
simulation techniques. Constraints on a reaction coordinate r have turned out
to be a suitable means to explore difficult pathways without changing potential
function, energy or temperature. For a dense sequence of values of r, the
corresponding sequence of simulations provides a pathway for the process. As
only one coordinate among thousands is fixed during each simulation, the
pathway essentially reflects the system's internal dynamics. From mean forces
the free energy profile can be calculated to obtain reaction rates and insight
in the reaction mechanism. In the last decade, theoretical tools and computing
capacity have been developed to a degree where simulations give impressive
qualitative insight in the processes at quantitative agreement with
experiments. Here, we give an introduction to reaction pathways and
coordinates, and develop the theory of free energy as the potential of mean
force. We clarify the connection between mean force and constraint force which
is the central quantity evaluated, and discuss the mass metric tensor
correction. Well-behaved coordinates without tensor correction are considered.
We discuss the theoretical background and practical implementation on the
example of the reaction coordinate of targeted molecular dynamics simulation.
Finally, we compare applications of constraint methods and other techniques
developed for the same purpose, and discuss the limits of the approach
- …
