52 research outputs found

    Cytidine-phosphate-guanosine oligodeoxynucleotides in combination with CD40 ligand decrease periodontal inflammation and alveolar bone loss in a TLR9-independent manner

    Get PDF
    Local administration of toll-like receptor 9 (TLR9), agonist cytidine-phosphate-guanosine oligodeoxynucleotide (CpG ODNs), and CD40 ligand (CD40L) can decrease ligature-induced periodontal inflammation and bone loss in wild type (WT) mouse. Objective: This study aimed to explore whether such effect is dependent on TLR9 signaling. Material and Methods: Purified spleen B cells isolated from WT C57BL/6J mice and TLR9 knockout (KO) mice were cultured for 48 hours under the following conditions: CD40L, CpG+CD40L, CpG at low, medium and high doses. We determined B cell numbers using a hemocytometer at 24 h and 48 h. Percentages of CD1dhiCD5+ B cells were detected by flow cytometry. Interleukin-10 (IL-10) mRNA expression and protein secretion were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and by ELISA, respectively. The silk ligature was tied around the maxillary second molars for 14 days, during which the CpG+CD40L mixture or PBS was injected into palatal gingiva on days 3, 6, and 9. Results: For both WT and TLR9 KO mice, CpG significantly induced B cell proliferation, increased IL-10 mRNA expression and protein secretion of IL-10 but reduced CD1dhiCD5+ B cells population; local injection of CpG+CD40L mixture significantly decreased alveolar bone loss and the number of TRAP-positive cells adjacent to the alveolar bone surface, and significantly increased the gingival mRNA expression of IL-10 and decreased RANKL and IFN-γ mRNA expression. Conclusions: These results indicated that CpG plus CD40L decreased periodontal inflammation and alveolar bone loss in a TLR9-independent manner in ligature-induced experimental periodontitis

    Toll-like receptor agonists Porphyromonas gingivalis LPS and CpG differentially regulate IL-10 competency and frequencies of mouse B10 cells

    Get PDF
    IL-10 expressing regulatory B cells (B10) play a key role in immune system balance by limiting excessive inflammatory responses. Effects of toll-like receptor signaling and co-stimulatory molecules on B10 activity during innate and adaptive immune responses are not fully understood. Objective This study is to determine the effects of P. gingivalis LPS and CpG on B10 cell expansion and IL-10 competency in vitro. Material and Methods Spleen B cells were isolated from C57BL/6J mice with or without formalin-fixed P. gingivalis immunization. B cells were cultured for 48 hours under the following conditions: CD40L, CD40L+LPS, CD40L+CpG, and CD40L+LPS+CpG in the presence or absence of fixed P. gingivalis. Percentages of CD1dhiCD5+ B cells were measured by flow cytometry. IL-10 mRNA expression and secreted IL-10 were measured by real-time quantitative PCR and by ELISA respectively. Results P. gingivalis LPS plus CD40L significantly increased CD1dhiCD5+ B cell percentages and secreted IL-10 levels in both immunized and non-immunized mice B cells in the presence or absence of P. gingivalis, compared with control group. Secreted IL-10 levels were significantly increased in CD40L+LPS treated group compared with CD40L treatment group in the absence of P. gingivalis. CpG plus CD40L significantly decreased CD1dhiCD5+ B cell percentages, but greatly elevated secreted IL-10 levels in immunized and non-immunized mice B cells in the absence of P. gingivalis, compared with CD40L treatment group. Conclusions P. gingivalis LPS and CpG differentially enhance IL-10 secretion and expansion of mouse B10 cells during innate and adaptive immune responses

    Pseudogenization of Mc1r gene associated with transcriptional changes related to melanogensis explains leucistic phenotypes in Oreonectes cavefish (Cypriniformes, Nemacheilidae)

    Get PDF
    Organisms that have colonized underground caves encounter vastly different selective pressures than their relatives in above‐ground habitats. While disruption of certain pigmentation genes has been documented in various cave‐dwelling taxa, little is known about wider impacts across pigmentation and other gene pathways. We here study the timeframe and transcriptional landscape of a leucistic and blind cypriniform fish (Oreonectes daqikongensis, Nemacheilidae) that inhabits karst caves in Guizhou, China. Based on data from the mitochondrial ND4, ND5, and Cytb genes, we show that the divergence between O. daqikongensis and its most closely related pigmented species occurred ca. 6.82 million years ago (95% HPD, 5.12–9.01), providing ample time for widespread phenotypic change. Indeed, we found that the DNA sequence of Mc1r (melanocortin‐1 receptor), a key gene regulating the biosynthesis of melanin in most vertebrates, is pseudogenized in O. daqikongensis, caused by a 29 bp deletion in the protein‐coding region. Furthermore, 99,305 unigenes were annotated based on the transcriptome of skin tissue of Oreonectes fish. Among the differentially expressed unigenes, 7,326 (7.4% of the total unigenes) had decreased expression and 2,530 (2.5% of the total unigenes) had increased expression in O. daqikongensis skin. As predicted, the expression of Mc1r and 18 additional genes associated with melanin biosynthesis was significantly downregulated in the skin tissue of O. daqikongensis, but not in its congener. Our results, integrating with other studies on cavefishes, suggest that loss of pigmentation was caused by coding region loss‐of‐function mutations along with widespread transcriptional changes, resulting from extended evolutionary time as a cave‐dwelling form

    Periodontal health: A national cross‐sectional study of knowledge, attitudes and practices for the public oral health strategy in China

    Get PDF
    Aim To assess the status of periodontal health knowledge, attitudes and practices (KAP) among Chinese adults. Materials and Methods A cross‐sectional study was conducted in a nationally representative sample of adults (N = 50,991) aged 20 years or older from ten provinces, autonomous regions, and municipalities. Percentages of Chinese adults with correct periodontal knowledge, positive periodontal attitudes, and practices were estimated. Multiple logistic regression analyses were used to examine the related factors. Results Less than 20% of Chinese adults were knowledgeable about periodontal disease. Very few (2.6%) of Chinese adults use dental floss ≥once a day and undergo scaling ≥once a year and visit a dentist (6.4%) in the case of gingival bleeding. Periodontal health KAP was associated with gender, age, body mass index, marital status, place of residence, education level, income, smoking status, and history of periodontal disease. Conclusions Periodontal health KAP are generally poor among the Chinese adult population. Community‐based health strategies to improve periodontal health KAP need to be implemented. Increasing knowledge of periodontal disease, the cultivation of correct practices in response to gingival bleeding, and the development of good habits concerning the use of dental floss and regular scaling should be public oral health priorities

    Microinjection Manipulation Resulted in the Increased Apoptosis of Spermatocytes in Testes from Intracytoplasmic Sperm Injection (ICSI) Derived Mice

    Get PDF
    The invention of intracytoplasmic sperm injection (ICSI) has possibly been the most important development in reproductive medicine, one that has given hope to thousands of infertile couples worldwide. However, concerns remain regarding the safety of this method since it is a more invasive procedure than in vitro fertilization (IVF), since a spermatozoon is injected into the oocyte cytoplasm. Using mice derived from IVF technology as a control, we assessed the influence of invasive microinjection in the process of transferring sperm into oocyte cytoplasm in ICSI procedure on the development and physiologic function of resultant offspring. Our results demonstrated that mice produced from ICSI and IVF had no significant difference in phenotypic indices including body weight, forelimb physiology, and learning and memory ability. However, increased spermatocyte apoptosis was observed in the testis of adult ICSI mice, when compared with IVF mice. And, decreased testis weight and marked damage of spermatogenic epithelia were found in aged ICSI mice. Furthermore, proteomic analysis verified that most of the differentiated proteins in testes between adult ICSI and IVF mice were those involved in regulation of apoptosis pathways. Our results demonstrated that the microinjection manipulation used in the ICSI procedure might pose potential risks to the fertility of male offspring. The changed expression of a series of proteins relating to apoptosis or proliferation might contribute to it. Further studies are necessary to better understand all the risks of ICSI

    Fuel Selections for Electrified Vehicles: A Well-to-Wheel Analysis

    No full text
    Electrified vehicles (xEV), especially the battery electric vehicle (BEV), are burgeoning and growing fast in China, aimed at building a sustainable, carbon-neutral future. This work presents an overview and quantitative comparison of the carbon-neutral vehicles fuel options based on the well-to-wheel (WTW) analysis. A more intuitionistic figure demonstrates the fuel options for greenhouse gas (GHG) emissions and describes the sustainability. Electricity and hydrogen shift the tailpipe emissions to the upstream process, forming larger WTW emissions from a fuel cycle view. The electricity WTW GHG emission reaches as much as twice that of gasoline. However, the high efficiency of the electric drive system improves the WTW emission performance from a vehicle view, making the lowest WTW emission of BEV. The fuel options’ technical and environmental perspectives are presented. Finally, long-term carbon-neutral vehicle development is discussed

    The complete chloroplast genome of a purple Ethiopian rape (Brassica carinata: Brassicaceae) from Guizhou Province, China and its phylogenetic analysis

    No full text
    Brassica carinata A. Braun (Ethiopian rape), which was derived from the interspecific hybridization between B. nigra and B. oleracea, is used as both an oilseed and a leafy vegetable. The complete chloroplast (cp) genome of a purple B. carinata was obtained. This cp genome has a typical quadripartite structure and is 153,641 bp in length. The GC content of the cp genome is 36.39%. A total of 113 genes were predicted on this cp genome, including 79 protein coding, 4 rRNA, and 30 tRNA genes. Among these genes, 18 genes were duplicated (7 tRNAs, 4 rRNAs, and 7 protein coding genes). Sixty-eight SSR loci, including 11 compound SSRs, were identified in this cp genome by MISA. The phylogenetic tree analysis fully resolved B. carinata in a clade with B. nigra. This study provides important information for future evolution, genetic and molecular biology studies of B. carinata

    Identification of Random Amplified Polymorphic DNA and Simple Sequence Repeat Markers Linked to Powdery Mildew Resistance in Common Wheat Cultivar Brock

    No full text
    A total of 350 rapid amplified polymorphic DNA (RAPD) primers and 100 simple sequence repeat (SSR) primer pairs were screened to identify polymorphic markers associated with powdery mildew resistance. Only primer OPP15 produced a 900bp reproducible DNA fragment (OPP15900) in the resistant parent cv. Brock and most of the resistant individuals, but this DNA fragment was absent in susceptible parent Jing411 and Line 015. The progeny, including 218 resistant and 81susceptible lines, derived from a cross Line 015/Brock//Jing4112 was used for linkage analysis. 209 resistant and 8 susceptible individuals yielded OPP15900 products, but 73 susceptible and 9 resistant ones yielded no OPP15900 products. One dominant RAPD molecular marker OPP15900 linked to powdery mildew resistance gene was identified in Brock with a genetic distance of 6.0 cM. A SSR marker Xgwm114 was also proved to link with the powdery mildew resistance and genetic distance of 9.3 cM. These two new molecular markers are useful for facilitating selection and pyramiding the resistance genes in wheat breeding

    Identification of RAPD Markers and Development of SCAR Markers Linked to a Powdery Mildew Resistance Gene, and their Location on Chromosome in Wheat Cultivar Brock

    No full text
    Wheat cultivar Jing 411 which is susceptible to powdery mildew, and wheat cultivar Brock and NILs of Jing 411, which are resistant to powdery mildew were analysized for polymophisms using 213 random amplified polymorphic DNA primers. Only one primer (S2092) stably produced a polymorphic band between the resistant and susceptible plants. Linkage analysis of this marker (S2092972) revealed that the polymorphism existed in a 131 F2 segregating population. S2092972 was closely linked to a powdery mildew resistance gene in wheat cultivar Brock, at a linkage distance was 4.9 cM. S2092972 was converted to sequence characterized amplified region (SCAR) markers SCAR860 and SCAR200. The two SCAR markers were used for detecting F2 segregating population. SCAR860 and SCAR200 existed in resistant plants but were absent in the susceptible plants. We concluded that S2092972 was located on the chromosome 3BL. These markers will be useful for marker-assisted selection and gene pyramiding in wheat resistance breeding
    corecore